Oligopoly

ECON 370: Microeconomic Theory
Summer 2004 – Rice University
Stanley Gilbert

Oligopoly: Introduction

• Alternative Models of Imperfect Competition
 – Monopoly and monopolistic competition
 – Duopoly - two firms in industry
 – Oligopoly - a few (> 2) firms in industry

• Essential Features
 – Nature of interaction between firms (beyond those captured in price) is essence of theories
 – No single “grand theory”

Oligopoly: Analysis

• Simplest Model of Oligopoly: Duopoly
 – Assume only two firms (to limit interactions)
 – Assume homogeneous output
 • No product differentiation
 • Single market price
 • No competition in quality
 – Equilibrium: Solve for output, price of each firm

Oligopoly Models

• We use Game Theory to model strategic behavior
 – Strategic Behavior takes into account how others will react to one’s actions

• Non-cooperative simultaneous games
 – Simultaneously choose quantities (or prices)

• Non-cooperative sequential games
 – Quantity (or price) leader (dominant/barometric firm)
 – Quantity (or price) follower

• Cooperative games
 – Collusion -- jointly set quantities (or prices)
Quantity Competition: Introduction

• Assume firms choose output and allow prices to adjust to clear markets
• Each firm chooses output to max profits, given output level of competitor
• “Firms compete in outputs”
• Firm 1: y_1 units; Firm 2: y_2 units
 – total quantity supplied is $y_1 + y_2$
 – market price will be $p(y_1 + y_2)$
 – total cost functions are $c_1(y_1)$ and $c_2(y_2)$

Quantity Competition: Profits

• Firm 1 maximizes profit, given y_2
• Firm 1 profit function:
 $\pi_1(y_1; y_2) = p(y_1 + y_2) y_1 - c_1(y_1)$
• Firm 1 “Reaction Function”
 – What output y_1 maximizes firm 1 profit?
 – Given y_2 (expected or observed)
 – Solve for reaction function $y_1 = f(y_2)$

Quantity Competition: Example

• Let market inverse demand function be
 – $p(y_T) = 60 - y_T$
 – $y_T = y_1 + y_2$
• Let firms’ (different) total cost functions be
 – $c_1(y_1) = y_1^2$
 – $c_2(y_2) = 15y_2 + y_2^2$

Example: Firm 1

• Firm 1 profit function is
 – $\pi_1(y_1; y_2) = (60 - y_1 - y_2)y_1 - y_1^2$
• So, given y_2, solve for firm 1 profit-maximizing y_1
 $\frac{\partial \pi_1}{\partial y_1} = 60 - 2y_1 - y_2 - 2y_1 = 0$
 $y_1 = R_1(y_2) = 15 - \frac{1}{4} y_2$
Graph: Firm 1

Firm 1’s “Reaction Curve” $R_1(y_2)$

\[y_1 = R_1(y_2) = 15 - \frac{1}{4} y_2 \]

(or $y_2 = 60 - 4 y_1$)

Example: Firm 2

• Similarly, given y_1, Firm 2’s profit function is
 \[-\pi_2(y_2; y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2 \]

• To get Firm 2’s profit-maximizing output
 \[\frac{\partial \pi_2}{\partial y_2} = 60 - y_1 - 2y_2 - 15 - 2y_2 = 0 \]

• Firm 1’s reaction function (best response) is
 \[y_2 = R_2(y_1) = \frac{45 - y_1}{4} \]

Equilibrium

• Equilibrium is a Cournot-Nash equilibrium
 • Each firm’s output level is best response to other firm’s output level
 • Stable: neither firm wants to change output
 • Thus, (y_1^*, y_2^*) such that
 \[y_1^* = R_1(y_2^*) \]
 \[y_2^* = R_2(y_1^*) \]
 • Essentially solving a pair of simultaneous equations
Equilibrium

\[y_1^* = R_1(y_2^*) = 15 - \frac{1}{4} y_2^* \]
\[y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4} \]

Substitute for \(y_2^* \) to get

\[y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right) \Rightarrow y_1^* = 13 \]

\[y_2^* = \frac{45 - 13}{4} = 8 \]

Cournot-Nash equilibrium is \((y_1^*, y_2^*) = (13, 8)\)

Cournot v Monopoly

- Price
 - Less than monopoly
 - Greater than perfect competition
- Quantity
 - Greater than monopoly
 - Less than perfect competition
- Total profit
 - Less than monopoly
 - Greater than perfect competition

Price Competition: Bertrand Games

- Alternative strategic behavior
- Firms compete using only price (not quantity)
- Bertrand games
 - Simultaneous game
 - Firms use price as strategic variable
- Get results dramatically different from quantity competition
Bertrand Games: Introduction

- Example of Bertrand game
 - Each firm’s MC = c, constant
 - All firms simultaneously set their prices
- Nash Equilibrium: All firms set \(p = c \)
 - All firms have same \(p \), or high \(p \) loses all sales
 - Any \(p > c \), slight price reduction yields big profit
 - Any \(p < c \), lose money

Sequential Games

- Sequential games
- One firm (larger firm) moves first
- Then “follower firms” react
- Both consider reactions of other
- Can compete in
 - Quantity—von Stackelberg Model
 - Price—Price leadership models

The von Stackelberg Model

- Outputs are strategic variables
- Firm 1—leader firm—chooses \(y_1 \) first
- Firm 2—follower—then reacts
- Leader anticipates reaction of follower (doesn’t assume \(y_2 \) constant as in C-N)
- Issues
 - What are prices, outputs, profits
 - Is there a “first mover” advantage?

The von Stackelberg Model

- Follower firm will choose \(y_2 \) to maximize profit, given leader firm \(y_1 \) (C-N assumption)
- Thus, follower reaction function: \(y_2 = R_2(y_1) \)
- Leader firm (1) anticipates follower firm’s (2) reaction function, so chooses \(y_1 \) to max profit
 - \(\pi_1(y_1) = p[y_1 + R_2(y_1)]y_1 - c_1(y_1) \)
Von Stackelberg Game: Profits

- Note: leader firm makes a profit at least as large as Cournot-Nash profit
 - Can always choose $y_1 = \text{C-N output}$
 - Follower will respond with $y_2 = \text{C-N output}$
 - So, can at least achieve C-N profit
- Return to duopoly example w/ different MC’s
 - Leader firm 1 has lower costs $c_1(y_1) = y_1^2$
 - Follower firm 2 has higher costs $c_2(y_2) = 15y_2 + y_2^2$

Von Stackelberg Game: Example

- Same characteristics as before
- Market inverse demand function is
 - $p = 60 - y_T$
- The firms’ cost functions are
 - $c_1(y_1) = y_1^2$ and $c_2(y_2) = 15y_2 + y_2^2$
- Firm 2 is follower, with reaction function
 $$y_2 = R_2(y_1) = \frac{45 - y_1}{4}$$

Von Stackelberg Game: Example

Leader’s profit function is
$$\pi_l^s(y_1) = [60 - y_1 - R_2(y_1)]y_1 - y_1^2$$
$$= \left(60 - y_1 - \frac{45 - y_1}{4}\right)y_1 - y_1^2$$
$$= \frac{195}{4}y_1 - \frac{7}{4}y_1^2$$

For a profit-maximum, first order condition is
$$\frac{195}{4} = \frac{7}{2}y_1 \Rightarrow y_l^s = 13.9$$

Von Stackelberg Game: Example

- Follower firm’s response to $y_1 = 13.9$ is
 $$y_2^s = R_2(y_1^s) = \frac{45 - 13.9}{4} = 7.8$$
- Recall C-N outputs are $(y_1^*, y_2^*) = (13, 8)$
- So leader produces more than C-N output, follower produces less than its C-N output
- First mover advantage to leader (but modest because leader also has cost advantage)
Sequential Price Games: Introduction

- **Price-leadership**
 - Sequential game
 - Price-leader firm sets its price
 - Typically large, respected firm
 - Dominant firm
 - Barometric firm
 - Follower firms – usually smaller – react to leader
- Note: Follower firms are price takers
 - Analogous to competitive firms

Price Leadership

- Market demand function is $D(p)$
- Given leader price p, follower firms supply $Y_f(p)$, anticipated by leader
- So leader gets residual demand
 - $L(p) = D(p) - Y_f(p)$
- Leader’s chooses p to max profit
 - $\pi_L(p) = p[D(p) - Y_f(p)] - c_L[D(p) - Y_f(p)]$

Price Leadership Results

- Followers act as competitors
 - $P=MC$
 - Economic profit of each is zero
- Leader acts as monopolist w/ residual demand
 - $MR_L=MC_L$
 - Only leader earns monopoly profits

Co-operative Behavior: Collusion

- Collusion is illegal in US
- But not for international cartels
 - OPEC
 - Bauxite, copper, tin, coffee, tea, mercury, iodine
- Goal of cartel: Joint profit maximization
 - Can achieve (joint) monopoly profits
 - Must divide among cartel members
 - If cartel is part of market, like dominant firm model
Co-operative Behavior: Collusion

- Fundamental tension for cartels
- Stability: Higher profits (share of joint max)
- Instability
 - Successful cartel has $p >> MC$
 - One member alone faces nearly fixed p
 - Gets huge profits if lowers own price while others hold price constant (cheat on agreement)

Co-operative Behavior: Collusion

- Factors that promote cartel cohesion
 - Similar costs, expectations of demand, motives so can agree on strategy
 - Inelastic demand so potential profits large (disincentive for cheating)
 - Inelastic demand in LR so profits maintained
 - Little expansion of supply by non-members in LR