3. Solution

start with clausius-clapeyron equation

\[Q = T \Delta V \frac{d \text{psat}}{dT} \]

Here \(\Delta V \) is latent heat of vaporization

note

\[\Delta V = V^* - V^\ominus = V^\ominus (\rho^\ominus \rho^*) \]

\(\Delta V \) is volume change with vaporization

psat is saturated vapor pressure

Assume vapor is ideal gas and \(Q = f(T) \), then \(\Delta V = \frac{nRT}{psat} \)

\[\Rightarrow Q = \frac{nRT}{psat} \frac{d \text{psat}}{dT} \]

\[= nR \left(\frac{d \ln \text{psat}}{d(T/T^\ominus)} \right) \]

\[= -nR \frac{d \ln \text{psat}}{d(1/T)} \]

So we get

\[d \ln \text{psat} = -\frac{Q}{nR} d(1/T) \]

Integration:

\[\ln \text{psat} = -\frac{Q}{nRT} + C \]

\[\Rightarrow \text{psat} = e^{-\frac{Q}{nRT}} = C e^{-\frac{Q}{nRT}} \]

(note \(Q \) is molar quantity)

At constant pressure \(Q = \Delta H \)