To find pressure maximum

\[\frac{2p'}{3T'} = 0 \Rightarrow -\frac{1}{\sqrt{3}} (6\sqrt{3}t' - 9) + (3 - 2\sqrt{3}) \cdot 6\sqrt{3} \cdot \frac{1}{2\sqrt{3}} = 0 \]

That's \(\frac{9}{\sqrt{3}T'} - 6 + \frac{9\sqrt{3}}{\sqrt{T'}} - 6 = \frac{12\sqrt{3}}{\sqrt{T'}} - 12 = 0 \)

So. \(T' = 3 \) at this point \(p' = 9 \)

The inversion curve is.

\[p' \]

When substitute the negative root into vdweqns.

You'll find \(\sqrt{\frac{1}{3 + 2\sqrt{3}}} = 3V' - 1 = \frac{-2\sqrt{3} - 3}{3 + 2\sqrt{3}} = 3 \)

Then \(p' = \frac{2T'}{3V' - 1} - \frac{3}{V'} \)

\[= - (3 + 2\sqrt{3}) (6\sqrt{3}T' + 9) \]

\(p' \) is negative! This isn't reasonable so negative root should be discarded.