3. Solution.

The equation of state function of van der Waals gas is

\[P = \frac{RT}{V-b} - \frac{a}{V^2} \]

Multiplying through by \(V^2 (V-b) \) produces a cubic equation in \(V \):

\[PV^3 - pV^2 b = RTV^2 - a(V-b) \]

So we should expect curves that have a maximum and minima, as cubic equations often do. However, the previous statement for some \(T \) (i.e., the critical temperature), the max. and min. coalesce. So we expect an isotherm with an inflection point.

Above these isotherms (\(T > T_c \)) the curve should be monotonic in \(V \). Also notice that at \(V = b \), there is a divergence in the equation of state, so we expect the slope of the \(p-V \) curve will be very steep at small \(V \).

0) At the critical point.

The \(p-V \) curve has an inflexion point where \(\left(\frac{\partial^2 P}{\partial V^2} \right)_T = 0 \) and \(\left(\frac{\partial^3 P}{\partial V^3} \right)_T = 0 \)

From \(P = \frac{RT}{V-b} - \frac{a}{V^2} \) van der Waals

\(\left(\frac{\partial^2 P}{\partial V^2} \right)_T = -\frac{RT}{(V-b)^3} + \frac{2a}{V^3} = 0 \Rightarrow RTcV_c^3 = 2a(V_c-b)^3 \)

\(\left(\frac{\partial^3 P}{\partial V^3} \right)_T = \frac{2RT}{(V-b)^4} - \frac{6a}{V^4} = 0 \Rightarrow 2RTcV_c^4 = 6a(V_c-b)^3 \)

\(\frac{0}{\Theta} \Rightarrow 2V_c = 3(V_c-b) \Rightarrow \boxed{\frac{V_c}{b} = 3} \)