A conducting ring of resistance R and radius a is placed in a uniform magnetic field, B, as shown below. The magnitude of the magnetic field is steadily increasing over time. The magnitude of the induced EMF is:

1). $B \pi a^2$
2). $B 2 \pi a$
3). $2 \pi a \frac{dB}{dt}$
4). $\pi a^2 \frac{dB}{dt}$
5). 0.
A conducting ring of resistance R and radius a is placed in a uniform magnetic field, B, as shown below. The magnitude of the magnetic field is steadily increasing over time. The magnitude of the induced EMF is:

1. $B \pi a^2$
2. $B 2 \pi a$
3. $2 \pi a \frac{dB}{dt}$
4. $\pi a^2 \frac{dB}{dt}$
5. 0.