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Abstract

Over the last decade, extensive exploitation of the different kinds of near-fields existing
spontaneously or artificially in immediate proximity to the surface of materials has generated a
considerable amount of new exciting developments. In this review the main physical properties
of these peculiar fields are revisited. In a first stage, following a unified pedagogical model,
we recall that the concept of near-field is not restricted to specific research areas, but actually
covers numerous domains of contemporary physics (electronics, photonics, interatomic forces,
phononics, . . .). To a great extent, it will be shown that it mainly concerns phenomena involving
evanescent fields (electronic density surface wave, evanescent light, local electrostatic and
magnetic fields, . . .) or localized interatomic or molecular interactions.

In fact, the practical exploitation of these waves and local interactions was latent for a long
time in physics until the beginning of the 1980s which was marked by the emergence and the
success of local probe-based methods (STM, SFM, SNOM). Nowadays, various theoretical
approaches and powerful numerical methods well suited to near-field physics are described
in the literature. In the second part of this review, different original aspects of the near-field
will be discussed with the intent of realizing control and optimization of its properties. In
particular, the physics hidden inside the inverse decay length parameter η associated with all
near-field concepts will be analysed in detail. This analysis may serve as a general framework
for the design of physical or chemical compounds (photonic and electronic) able to control
this fundamental parameter.

We conclude the review by reconsidering an old and fundamental problem that can be
summarized by the question, ‘What happens in the near-field interaction zone?’. Actually, this
problem has been largely unaddressed in the near-field literature because what is needed in most
practical situations is just the transmission coefficient of the whole device. However, when
some dissipative elements interact with the near-field, this reasoning appears to be somewhat
limited. In order to get more insight into this challenging question, we briefly give a state-
of-the-art review of the relation between tunnelling events and energy dissipation inside the
near-field.
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1. Introduction

The purpose of this review is to explore, deepen and unify various conceptual descriptions
concerning the physics of the near-field produced or existing spontaneously at the surface or at
the interface of two materials. Although near-field physics was a well established research area
before the mid 1970s (Adamson 1976, Agarwal 1975, Ash and Nicholls 1972, Antoniewicz
1974, Bethe 1944, Carniglia et al 1972, Celli et al 1975, Economou and Ngai 1974, Kliewer
and Fuchs 1974, Lukosz and Kunz 1977, Mavroyannis 1963, Maclachlan et al 1963, Mahanty
and Ninham 1973, Maradudin and Zierau 1976, Otto 1968, Ruppin 1973, Steele 1974), its
actual and systematic investigation began only 18 years ago with the invention of the scanning
tunnelling microscope (STM) (Binnig and Rohrer 1982, Binnig et al 1982, Behm et al 1990).
Within a few years of this important discovery, the broadcasting of its impressive achievements
and measurements around the world had given rise to an explosion of new experimental
devices (Binnig et al 1986, Pohl et al 1984, Dürig et al 1986, Güntherodt et al 1995) able
to explore and measure many different kinds of near-fields (electronic, photonic, acoustic,
force, . . .).

1.1. Basic concepts and definitions

It has long been known that the surface limiting a solid body locally modifies the physical
properties of many materials (dielectric, metal, or semiconductor) (Zangwill 1988). In other
words, the symmetry loss generated by the presence of an interface produces specific surface
phenomena that have been well identified in the past (spontaneous polarization, electronic work
function, electronic surface states, surface polaritons, surface enhanced optical properties, . . .).

The near-field can be defined as the extension outside a given material of the field existing
inside this material. Basically, it results from the linear, homogeneous and isotropic properties
of the space–time that impose a continuous variation of field amplitudes and energies across
the interfaces. In most cases, the amplitude of the near-field decays very rapidly along the
direction perpendicular to the interface giving rise to the so-called evanescent wave character
of the near-field.

In optics, the symmetry reduction occurring in the vicinity of an interface can enhance
some hyperpolarizabilities initially absent in the bulk materials. This has been used for surface
second-harmonic generation at the metal–air interface (Furtak and Reyes 1980). In the vicinity
of a metal–vacuum interface, the electron density distribution tails off exponentially into the
vacuum and exhibits Friedel oscillations on the metal side (Ziman 1964, Lang 1969). A long
list of similar effects extensively described in the surface science literature arise due to the
existence of this near-field zone. In this context, surfaces can also be considered as a privileged
place to generate, guide, manipulate and detect evanescent waves.

1.2. Objectives

The main objective of this review is to discuss the similarities and the fundamental differences
between different kinds of near-fields. The discussion is constructed around a limited number
of typical examples borrowed from surface physics. In this domain, the research literature has
developed explosively and given rise to a huge amount of peculiar results. Whenever possible,
we emphasize the common features that govern their physical properties (shape, localization,
polarization, decay length, . . .). Furthermore, since this review is multidisciplinary, a special
effort has been made to expose a large part of the theoretical background with simple and
analytical formalisms.
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Four different kinds of near-fields are treated in section 2: namely, the electrostatic surface
field, the optical near-field, the fluctuating electromagnetic field and finally the electronic
evanescent wavefunction near metallic surfaces. Although many other particular cases might
be analysed, this limited selection provides a good insight into this research field. This
introductory classification is then used in section 3 to discuss and illuminate some intrinsic
properties of these near-fields.

The main mechanisms responsible for the detection of the near-field are detailed in
section 4 and other original aspects of the near-field are discussed in section 5. In particular,
the physics hidden inside the inverse decay length parameter η associated with all near-
field concepts, will be analysed in a detailed manner. This analysis will serve as a general
framework to design physical or chemical compounds (electronic and photonic) able to
optimize this fundamental parameter. These two parts (sections 4 and 5) introduce logical and
readable presentations of the basic concepts inherited from two currently available real-space
approaches, namely the localized Green function (LGF) (Lucas et al 1988, Girard 1992) and
elastic scattering quantum chemistry (ESQC) (Sautet and Joachim 1991). These frameworks
serve to stress the equivalence between scattering and localized states theories. Finally, a brief
insight into recent and new attempts at energy dissipation calculations in an evanescent regime
is provided in section 6.

The material covered in the review should be of direct interest to a broad range of people
working with different local probe-based methods (LPBMs) but could also be attractive to the
physicist communities concerned with resonant and nonresonant tunnel transfer (electronic,
photonic or excitonic).

2. The different categories of near-fields

According to our previous definition (see section 1.1), a given field F(r) lying in a spatial
region (A) always presents a continuous extension inside an adjoining domain (B). This
proposition is true whatever the change between the physical properties of the two regions (A)
and (B)may be. In well defined conditions, this leads to the occurence of a more or less rapid
decay of the field F(r) inside the domain (B). We can distinguish two important categories
of such interfacial near-fields.

(i) The first corresponds to spontaneous near-fields produced in (B) from a permanently
established field in (A). For example, permanent electric fields in immediate proximity to an
ionic crystal belong to this category. This is also the case of the wavefunctions of electrons that
tail off the surface of a metal. More subtle are the spontaneous surface electromagnetic fields
because they result from the correlation of fluctuating densities of charges inside the materials.
Although not directly accessible, they are responsible for near-field dispersion effects, such as
the van der Waals force field and the spontaneous interfacial polarization of the free surface of
a dielectric.

(ii) The second class gathers together surface near-fields that can only be produced by
applying an external excitation (photon and electron beams impinging on a surface). Both
optical near-fields and surface plasmon-polaritons excited at a solid interface provide good
illustrations of this category. These phenomena have a special interest because they can be
manipulated at will by an external operator.

In sections 2.1–2.4 four typical examples belonging to these two families are surveyed.
We have made a special effort to present these phenomena from an unified point of view based
on simple theoretical concepts.
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Figure 1. Schematic drawing of an NaCl crystal. The
large circles represent the Cl− ions, the small circles
represent the the Na+ ions.

2.1. Electrostatic surface fields

A simple example of permanent electric near-field can be found close to the surface of ionic
or metal oxide crystals (NaCl, LiF, MgO, . . .). We focus mainly on the case of the (100) NaCl
surface.

Following the pioneering works of Born and Madelung, it is well known that the NaCl
crystal stability results from a subtle competition between long-range Coulomb and short-range
core–core interactions. It was soon recognized that the surface atoms produce an electric field
E(r) localized at the vacuum–NaCl(100) interface whose the associated electric potential
V(r) can be merely described by adding the individual charge contributions of each atom. The
electric potential at a point r = (x, y, z > 0) = (l, z) lying above the surface is given by

V(r) =
∑
α,β

∑
s,p

Lp
qs

|r − rs,p,α,β | . (1)

The (s, p) atom is the sth atom of the two-dimensional (2D) primitive cell pertaining to the
pth plane parallel to the surface and located at a distance zp from it. The indices (α, β) serve
to label primitive surface cells pertaining to a given plane (p). We can write

rs,p,α,β = α(A, 0) + β(0, A) + us,p − (p − 1)Duz (2)

where A is the surface lattice parameter (3.99 Å for NaCl), uz is a unit vector perpendicular
to the surface, and D represents the spacing between two consecutive planes. The factor Lp
accounts for the screening effect on the charges due to the surroundings as viewed by a test
point outside the solid (Girard and Girardet 1987), and the charge qs is related to the sth atom
of the surface primitive cell (see figure 1). For the (100) face of an ionic crystal, the translation
vector is related to the lattice parameter A by

us,p =
(
A

2
,
A

2

)
[1 − (−1)s+p]. (3)

In order to benefit from the surface periodicity, equation (1) may be rewritten as a
summation in the surface reciprocal space {g},

V(r) = 2π

A2

∑
s,p

∑
g

Lpqs exp(−g(z− zp))
exp[ig · (l + us,p)]

g
(4)

where the reciprocal lattice vectors g are generated by two integer numbers g1 and g2:

g = 2π

A
(g1, g2). (5)

The two major contributions of (4) yielded by the two first-surface harmonics (1, 0) and (0, 1)
lead to a simple expression

V(r) = 1

A

∞∑
p=1

Lp exp

[
−2π

A
(z + (p − 1)D)

]
Fp(x, y) (6)
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Figure 2. Schematic drawing of two illumination configurations. (a) External reflection; (b) total
internal reflection.

where the corrugation potential profile is given by

Fp(x, y) =
∑
s=1,2

qs

{
cos

(
2π

A
(x + uxs,p)

)
+ cos

(
2π

A
(y + uys,p)

)}
. (7)

Outside the crystal, the components of the electric field E(r) = −∇V(r) derived from the
local ionic potential (6) decay exponentially (exp(−2πz/A)). This is a static and permanent
near-field with an inverse decay length η = 2π/A. For the (100) face of NaCl this parameter
is equal to 1.574 Å−1 and at 3 Å from the outmost surface atoms the Ez(r) component can
reach 2.5 V Å−1.

Several others permanent surface electric fields have been identified (Adamson 1976). For
example, the well known electric superficial polarization generated by fatty acid molecules
films adsorbed on the surface of water belongs to this familly of electric near-field. Similarly,
the permanent dispersion polarization that originates from the zero-point quantum fluctuation
surface electromagnetic modes also generates a surface electric near-field displaying similar
features (Galatry and Gharbi 1981).

2.2. Optical near-fields

Optical nonfluctuating near-fields are not permanent and consequently must be generated by
an external light source. The simplest method consists of illuminating the surface of a sample
by external reflection. In this case, the structure of the electromagnetic field (E0,B0) above
the sample critically depends on the incident angle. This effect is particularly important
outside the Brewster angle, where the field intensity tends to be modulated by the interferences
between incident and reflected waves (see figure 2(a)). Another way to illuminate a transparent
sample is by total internal reflection (TIR). In this configuration, the illuminating field is
incident below the surface at an angle larger than the TIR angle θtot. In this way, the excitation
field above the surface becomes an evanescent surface wave (see figure 2(b)). The physics
of optical evanescent waves (OEWs) which is the central concept used in near-field optics
(NFO) instrumentation has been familiar in traditional optics for a long time (Courjon and
Bainier 1994). The analysis of the skin depth effect at metallic surfaces was probably the first
recognition of the existence of evanescent electromagnetic waves (Zenneck 1907, Sommerfeld
1909).

In the basic TIR configuration (see figure 2(b)), the surface wave is generated by
illuminating the surface from underneath by a monochromatic planewave of frequency ω0,
incident at an angle θ larger than θtot. Two different incident polarizations can be considered:
s polarization, where the incident electric field is parallel to the surface–air interface and p
polarization, where it is in the plane of incidence.
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The incident field at an observation point r = (x, y, z) = (l, z) above the surface becomes

E(r, t) = E(r)e
−iω0t = Eeik·le−ηze−iω0t , (8)

where

η = ω0

c
(sin2 θ − sin2 θtot)

1/2 (9)

and

‖k‖ = ω0

c
sin θ. (10)

When, for example, the incident field is propagating along the OY axis, one obtains for s
polarization:

E0x(r) = A0Ts

E0y(r) = E0z(r) = 0; (11)

and for p polarization:

E0x(r) = 0

E0y(r) = A0Tpδc

E0z(r) = A0Tpδs;
(12)

where

δs = sin(θ)

sin(θtot)
,

δc = iη

k0 sin(θtot)
.

(13)

In equations (11) and (12),A0 is proportional to eikye−ηz, and the factors Ts and Tp are the
usual transmission coefficients for each polarization (Born and Wolf 1964). From Maxwell’s
equations and relations (8), (11) and (12), we can easily deduce the magnetic field B0(r)

associated with the surface wave:

B0(r, t) = c

iω0
∇ ∧ E0(r, t). (14)

These last four equations completely define the electromagnetic state of the surface evanescent
wave. As previously, the inverse decay length η of the electromagnetic evanescent field can
be defined by analysing either the variations of the electric or magnetic field intensities when
getting closer and closer to the sample. For the perfectly planar surface considered in this
section, η does not depend on the polarization state. It just depends on the optical index
variation (implicitly contained in the parameter θtot) and, as described in figure 3, on the
incident angle θ . Near the grazing angle (θ ∼ 90◦) this parameter takes large values and the
optical evanescent wave vanishes.

In modern physics, the control of such peculiar light fields provides an interesting and
versatile tool that generates powerful applications (tunnelling time measurements (Balcou
and Dutriaux 1997), highly resolved microscopy and spectroscopy (Pohl and Courjon 1993),
and surface plasmon resonance spectroscopy of molecular adlayers (Jung et al 1998), atomic
physics (Landragin et al 1996, Esslinger et al 1993)). For example, in laser-cooled atoms
physics such phenomena can be used as adjustable ‘atomic mirrors’. Under certain conditions,
it is even possible, by adjusting the force field associated with the OEW to balance the van
der Waals forces between a small number of cooled atoms and the neighbouring surface. The
control of the different optical parameters (incident angle, polarization, wavelength, . . .) leads
to new noninvasive atomic manipulation processes (Landragin et al 1996).
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Figure 3. Illustration of the exponential decay variation versus the incident angle. The glass sample
of optical index n = 1.5 (θtot = 41.8◦) is illuminated in TIR (s-polarized mode).

2.3. Electromagnetic fluctuating near-field

We consider now a less conventional class of surface near-fields, that nonetheless have
a considerable impact in local probe-based experiments. It concerns the fluctuating
electromagnetic field existing spontaneously near the surface of any material. Historically,
as early as 1930, London showed that the quantum mechanical fluctuations between two
neutral atoms or molecules (devoid of any permanent multipole moments and separated by a
distance R) could give rise to a force which varies as R−7 (London 1930). Two decades later
this concept was generalized by Lifshitz in order to derive a complete scheme able to grasp the
origin of van der Waals dispersion forces between solid bodies (Lifshitz 1956). This author
explained these forces by a complicated Green function investigation of coherent fluctuations
in the solutions of Maxwell equations. Nowadays, the theory of van der Waals forces as well
as related dispersion effects are well established and extensively described in the literature
(Mahanty and Ninham 1976). In addition, several direct and indirect measurements of these
effects have been reported (Sabisky and Anderson 1973, Israelachvilli and Adams 1976, Tabor
and Winterton 1969, Lamoreaux 1997).

Actually, the existence of fluctuating near-fields (FNFs) {E1(t); E2(t)} localized in
immediate proximity to the surface of a solid body is responsible for several original near-field
effects (see figure 4). For instance, the atom–surface dispersion force (Maclachlan et al 1963),
the long-range polarization induced by adsorption (Antoniewicz 1974), and the dispersion
surface energy effect (Mahanty and Ninham 1973) belong to this family. In each case, the
relevant effect is governed by a same correlation function E built from the mean square of the
fluctuating electric field E2(r, r

′, ω) occurring in the vacuum side. It may be defined by

E(r′, r′′, ω′, ω′′) = Tr〈E2(r
′, ω′)E2(r

′′, ω′′)〉. (15)

In this definition, E2(r
′, ω′) represents the Fourier transform of the electric field operator

E2(r
′, t) associated with the solid. The brackets in (15) mean both statistical and quantum

average on the corresponding states (Landau and Lifshitz 1960b). Therefore, according to the
fluctuation–dissipation theorem (Landau and Lifshitz 1960b), this quantity can be related to



Near-field physics 901

Z Z

E
1
( )t t

Dispersion induced dipoleAtom-surface van der Waals
              force

E2( )

F µ

Surface fluctuating field

1 2

Z

Figure 4. Schematic illustration of the role played by the fluctuating electric surface near-field on
both electrical and mechanical properties of a physisorbed atom.

the imaginary part of the field susceptibility S(r′, r′′, ω) of the surface. In order to achieve
this transformation, we first express explicitly the average given in (15)

〈E2(r
′, ω′)E2(r

′′, ω′′)〉 = 1
2

∑
r

ρ(s)r 〈r|[E2(r
′, ω′),E2(r

′′, ω′′)]+|r〉 (16)

where ρ(s)r represents a diagonal term of the the density matrix associated with the surface.
Following some usual procedures described in the literature (see, for example, Landau and
Lifshitz (1960b)), this quantity can be merely expressed in terms of both the eigenenergies
U(s)
r of the isolated system and of its free energy Fs :

ρ(s)r = exp[(Fs − U(s)
r )/KBT ]. (17)

Finally, after some algebraic manipulation we can write

E(r′, r′′, ω′, ω′′) = h̄

2π
coth

{
h̄ω

2KBT

}
Im [Tr S(r′, r′′, ω′)]δ(ω′ + ω′′). (18)

The field susceptibility S that enters this equation reveals how a dipolar source field that
fluctuates at the frequency ω′ is modified by the proximity of the surface limiting the system.
In a general quantum description, this response function can be expressed in terms of the
matrix elements Eor

2 of the field operator E2 associated with the material system (Agarwal
1975, Agarwal 1977, Metiu 1984, Girard 1986):

S(r′, r′′, ω) = 1

h̄

∑
r

ρ(s)r

{
Eor

2 (r
′, ω′)Ero

2 (r
′′, ω′′)

ω − ωro
− Eor

2 (r
′′, ω′′)Ero

2 (r
′, ω′)

ω + ωro

}
. (19)

The deduction of the response field of the solid to a fluctuating dipole moment is another way of
deriving this susceptibility. In the particular case of a solid limited by a perfectly planar surface,
various theoretical methods have been developed to derive this dyadic tensor (Metiu 1984).
In the framework of the local approximation, it is merely related to the frequency-dependent
dielectric constant ε(ω) of the material:

S(r′, r′′, ω) = ε(ω)− 1

ε(ω) + 1

1

(X2 + Y 2 + Z2)5/2

×
(
Z2 + Y 2 − 2X2 3XY 3XZ

−3XY Z2 +X2 − 2Y 2 3YZ
−3XZ −3YZ 2Z2 − Y 2 −X2

)
(20)
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Figure 5. Illustration of theR−3 dependence of the mean
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plane dielectric surface.

Figure 6. Schematic drawing of the surface barrier as
seen by free electrons. The origin of the energy is chosen
at the bottom of the conduction band.

where, for the sake of simplicity, we have introduced three reduced variables defined from
r′ = (x ′, y ′, z′) and r′′ = (x ′′, y ′′, z′′), namely X = x ′ − x ′′, Y = y ′ − y ′′, and Z = z′ + z′′.
Note that the second-rank tensor (equation (20)) contains, through the frequency-dependent
dielectric constant ε(ω), all information about the dynamic response of the solid. Now, we
have all the ingredients we need to get more insight into the correlation function behaviour
(equation (15)). To make the discussion easy we restrict ourselves to the particular case where
the two locations r′ and r′′ coincide, i.e. when r′ = r′′ = (0, 0, R). In this case, the correlation
function defined from relations (15), (18) and (20) reduces to

E(R, ω′, ω′′) = h̄

4πR3
coth

{
h̄ω

2KBT

}
δ(ω′ + ω′′)Im

[
ε(ω′)− 1

ε(ω′) + 1

]
. (21)

As expected, this kind of correlation function generates the typical spatial decay (�R−3, see
figure 5) of the van der Waals dispersion energy (Uvdw = −C3/R

−3) between a single atom
and a planar surface (Mavroyannis 1963). Note that this equivalence is strictly verified only
if the multiple reflections occurring between the atom and the surface are neglected in the
calculation of dispersion energyUvdw. To conclude this part, let us underline that this FNF it is
not directly observable. Nevertheless, it can be converted into measurable physical quantities
(atomic force, atomic induced dipole moment, . . .). In these two examples, the spatial decay
will be governed by the first gradient of the correlation function E .

2.4. Electronic wavefunction at a metal surface

Before beginning with this last example it is appropriate to briefly outline what is known
theoretically about the surface charge density near metal. The metal–vacuum interface can
be merely described with the free-electron Sommerfeld approximation (FESA) in which the
ground state properties of the electron gas are obtained by filling up the conduction band with
N free electrons obeying a Fermi–Dirac distribution (Ashcroft and Mermin 1968). This free-
electron scheme can be completed by applying the density functional method inside a ‘jellium’
environment in which the ion cores are smeared out into a uniform positive background
truncated by the surface. The electron charge profile near various metal surfaces was calculated
with this technique by Lang and Kohn. It shows up the splitting between delocalized electronic
charges and positive ‘jellium’ into the vacuum side of the interface. In the metal, it exhibits
the well known Friedel oscillations, which have the characteristic wavelength π/KF (KF is
the Fermi wavevector). Typical curves displaying these features have been gathered in Lang
(1994) with additional information on the application of this model to the theory of single-atom
STM imaging. This method has been improved in order to account for the discrete nature of
both substrates and adsorbates (Tsukada et al 1991b).
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To illustrate and get more insight into this kind of surface near-field we continue our
discussion with the pedagogical FESA model. Let us consider the idealized metal–vacuum
interface depicted in figure 6. The metal surface experienced by the free electrons is represented
by a finite step potential in which the energy origin

V0(z) = 0, (z < 0),

V0(z) = φ + EF , (z > 0),
(22)

where φ is the work function and EF = h̄K2
F /2m is the Fermi level of the metal. We first

solve the Schrödinger equation for each of the two regions (I) and (II). Furthermore, we look
for solutions for incident electrons with energiesE = E⊥ +E‖ adapted to the planar geometry
under consideration:

5(l, z) = 1

v1/2
ψI/II (z) exp(ik‖ · l), (23)

where v represents an arbitrary volume, l = (x, y) and k‖ labels the wavevector part associated
to E‖ = h̄2k2

‖/2m. This procedure leads to

ψI (z) = exp(ikI z) +

{
ikI + kII
ikI − kII

}
exp(−ikI z), (z < 0),

ψII (z) =
{

i2kI
ikI − kII

}
exp(−kII z) (z > 0),

(24)

with

kI =
{

2mE⊥
h̄2

}1/2

, kII =
{

2m(V0 − E⊥)
h̄2

}1/2

. (25)

ψII (z) is the permanent and probabilistic near-field component of the electronic wavefunction
associated with the FESA electrons. This scalar near-field tails off the metal exponentially
with a maximun inverse decay length

η =
√

2mφ

h̄
. (26)

Typically, for a metal work function φ = 4.5 eV and η = 1.08 Å−1. This is slightly smaller
than the inverse decay of the electrostatic permanent near-field of the (100) NaCl surface (see
section 2.1). The exponential nature of the evanescent wavefunction provides the opportunity
for a uniquely sensitive form of microscopy (see figure 7). Exploitation of this simple electronic
decay law began with the invention of the STM by Binnig and Rohrer in 1981. Since then,
exploitation of this effect has enabled many original studies at subnanoscale resolution to
be achieved (Descouts and Siegenthaler 1992). This kind of permanent near-field is not very
sensitive to temperature and is essentially governed by the local work function along the surface
(Behm et al 1990).

Note that the total charge density near the interface can be deduced from (23)–(25).
Rigorously, we have

ρ(r) = 2e
∑
k

|5(r)|2f (E(k)), (27)

where f (E(k)) represents the Fermi–Dirac distribution. The charge density outside the metal
turns out to be a sum of individual evanescent waves whose decay length η−1 ranges from zero
(for grazing incident electrons) to a maximun value η−1

max = h̄/2
√

2mφ depending only on the
metal work function. Consequently, the charge density that tails off the metal always behaves
exponentially.
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Figure 7. A particular evanescent wavefunction generated by an
electron impinging specularly on the surface barrier.

In the absence of any approximation, equation (27) can be elaborated further by
rearrangement, leading to

ρ(r) = eKBT

π2(EF + φ)

∫ +∞

0
exp[−(2mV0/h̄

2 − kI )
1/2z]Log

{
exp(U/KBT ) + 1

exp(U/KBT )

}
k2
I dkI

(28)

with U = h̄2k2
I

2m − EF . This equation contains as asymptotic case the simple exponential law
e−zη associated with the Fermi-level electrons. Near the free surface of a metal the decay
length η−1 depends completely on the Fermi energy. It is technologically difficult to modify
or to modulate this parameter from inside the metal.

3. Intrinsic properties of the near-fields

As detailed in section 2, the surface decay laws yield the first important information about
the nature of the near-field under consideration. From the experimental point of view,
these simple properties are essential to define a more efficient regulation method able to
easily control the distance between the sample and the local near-field detector. Actually,
simultaneous knowledge of the behaviour of different near-fields can be exploited to develop
mixed experimental configurations in which gap-width control can be based on the detection
of a physical observable different from the surface near-field under study (Betzig et al 1992,
van Hulst et al 1993, Koglin et al 1997). The data gathered in table 1 gives a general idea
of what happens when the observation point R gradually moves away from the surface.
Obviously, this information can only be considered complete when we deal with idealized
plane samples. In real situations, we have to account for the lateral near-field variations
generated by the surface corrugations. As might be expected, all the wealth of the near-
field physics phenomena is encoded in these lateral variations. Depending on the sample
preparation, the surface corrugations can display different features ranging from the atomic
scale to the micrometric scale. For each kind of surface near-field (electronic, photonic, . . .),
the lateral surface profile (also called surface topography) produces well defined near-field
patterns. In particular, when the near-field is generated by particles (electrons or photons)
of incident wavelength λ that impinge on a sample displaying periodic surface structures
or supporting some specific eigenmodes (see, for example, the quantum coral experiment
by D Eigler (Crommie et al 1993)), the resulting patterns appear to be extremely sensitive
to the relation between incident wavelength and structure spacing (Crommie et al 1993,
Li et al 1998, Crampin and Bryant 1996). For example, in the case of illumination of
pseudo-periodic surface structures by a monochromatic light beam, the excitation of local
photonic states can generate specific near-field patterns (Girard et al 1995, Weeber et al
1996), as well as dramatic enhancement phenomena occurring in the near-field zone (Martin
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Table 1. Comparative presentation of different near-field decay laws.

Near-field

Electrostatic Optical surface Mean square Electronic
fields evanescent fluctuating wavefunction
(ionic crystals) waves near-fields (metal)

Decay law exponential exponential R−n exponential
exp(−Rη) exp(−Rη) (n = 3, 4, . . .) exp(−Rη)

Typical decay �0.6 �2000 �1000 �0.45
length η−1 (Å)

et al 1999). In this section, we discuss various peculiar near-field effects generated by well
defined surface corrugation. Two examples borrowed from the near-field literature will be
reviewed.

3.1. Optical near-field patterns generated by surface structures

When an optical electromagnetic wave interacts with a localized surface defect, the
electromagnetic energy distribution observed around the surface defect is extremely sensitive
both to the illumination mode and the physical parameters of the defect (shape, optical
index and size relative to the wavelength) (Celli et al 1975, Toigo et al 1977). A detailed
understanding of this optical interaction between subwavelength structures and external light
sources indisputably represents one of the most serious challenges raised by the tremendous
recent experimental progress of NFO (Pohl and Courjon 1993).

Accurate description of the optical field distribution, prior to its local detection, is
mandatory for describing properly the image formation mechanisms in NFO (Marti and Möller
1995). The main difficulties in achieving this goal are inherent in the complexity of the
geometries investigated in NFO (non-periodic objects, localized surface defects, nanometre-
size holes, . . .) as well as in the need to account for a large spectra of non-radiative optical
field components. In particular, corners, sharp edges and angular regions much smaller than
the incident wavelength generate specific difficulties for most of the theoretical schemes and
numerical methods for solving Maxwell’s equations (Girard and Dereux 1996, Greffet and
Carminati 1997) are needed. In the last three years, numerous simulations have been proposed.
These simulations clearly show the different roles played by both electric and magnetic fields in
the near-zone. They indicate unambiguously that the individual structures lying on the surface
distort the optical near-field intensities established by the self-consistent interaction between
the surface roughness and the incident light. In particular, it was demonstrated that when
the lateral dimensions of tiny objects are significantly smaller than the incident wavelength,
the interference pattern collapses and the optical electric near-field intensity distribution tends
to be fairly well localized around the objects (see figure 8). Under well defined conditions
for the incident field (polarization, wavelength) a highly localized electric near-field intensity
occurs just above the subwavelength protrusions. Recently these considerations facilitated the
interpretation of this peculiar NFO phenomenon. For example, a simple dielectric cube of
cross section 100 × 100 nm2 was imaged with the dielectric tip of a STOM/PSTM (photon
STM) with a bright contrast when the surface wave was p polarized and with a dark contrast
when it was s polarized.

In this section, we tackle this problem from a purely analytical point of view. In order to be
consistent with the material in section 2.2, we continue the discussion in the TIR configuration
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Figure 8. Illustration of the typical mesoscopic–nanometric transition occurring in NFO. The
test object represents the number 98 nanolithographed on a silica surface. The two numerical
simulations of the square electric field modulii are based on the field-susceptibility/Green function
theory (incident wavelength λ0 = 633 nm) (Girard and Dereux 1996). (a) The lateral size of
the dielectric pattern are of the same magnitude order as the wavelength λ0; (b) all the pattern
dimensions have been reduced by a factor of 6. The two white arrows indicate the surface wave
propagation direction.
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Figure 9. Schematic drawing of the model system used
to treat the simplest form of surface corrugation. A
transparent substrate, of optical index n = 1.5, supports
a small dielectric sphere of diameter D. The system
is illuminated in TIR with an incident angle θ0 and
Rsph = (0, 0,D/2).

(see figure 2). To illustrate the coupling effect between an OEW and a small spherical object
lying on a given sample, we consider the model system described in figure 9. The geometrical
parameters used in this calculation are reported in the figure caption. The substrate modifies
the polarizability α0(ω) of the particle. We then have

αef (Rsph, ω) = α0(ω) · M(Rsph, ω) (29)
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with

M(Rsph, ω) = [I − S(Rsph,Rsph, ω) · α0(ω)]
−1 (30)

where S(Rsph,Rsph, ω) is the nonretarded propagator associated with the bare surface, and
Rsph = (0, 0,D/2) labels the particle location. Within this description, the optical properties
of the spherical particle–surface supersystem are described in terms of ‘dressed’ polarizability.
In the past, several theoretical works (Metiu 1984) have been devoted to such calculation with
molecular systems interacting with simple substrates (spheres, cylinders, planes, . . .). If the
particle polarizability α0(ω) is initially isotropic, the symmetry of the tensor αef (Rsph, ω) is
governed mainly by the symmetry of the substrate. In the particular case of a single spherical
particle interacting with a perfectly planar surface, the dyadic tensor M(Rsph, ω) becomes
diagonal and, consequently, αef (Rsph, ω) belongs to the C∞v symmetry group. In this case,
αef may be described by two independent components αef|| and αef⊥ (Metiu 1984, Girard and
Dereux 1996, Keller 1996):

αef (Rsph, ω) =

α

ef

‖ (Rsph, ω) 0 0

0 α
ef

‖ (Rsph, ω) 0

0 0 α
ef

⊥ (Rsph, ω)


 (31)

with

α
ef

‖ (Rsph, ω) = 8α0(ω)D
3

8D3 − α0(ω);(ω)
(32)

and

α
ef

⊥ (Rsph, ω) = 4α0(ω)D
3

4D3 − α0(ω);(ω)
. (33)

In these two relations, the factor ;(ω) = (ε(ω)−1)
(ε(ω)+1) is merely the nonretarded reflection

coefficient of the surface. Note that when working with two dielectric materials of low optical
indices, the anisotropic ratio defined by

ξ = α
ef

⊥
α
ef

‖
(34)

remains close to unity over all the optical spectrum. In this case, we can easily verify that
the effective polarizability of the particle can be replaced by the polarizability of the free
particle with an excellent approximation. This approximation is no longer valid when dealing
with metallic objects for which all further calculations must be performed on the basis of
equations (32) and (33).

At a point r located above the sample in immediate proximity to the particle, the incident
homogeneous surface wave is locally distorted. In fact, the fluctuating dipole moment
µ(Rsph, ω0) = αef (Rsph, ω0) · E0(Rsph, t) induced inside the particle itself produces two
additional contributions to the electromagnetic field. At the first Born approximation, we can
write

E(r, t) = E0(r, t) + S0(r,Rsph) · αef (Rsph, ω0) · E0(Rsph, t) (35)

and

B(r, t) = B0(r, t) + Q0(r,Rsph, ω0) · αef (Rsph, ω0) · E0(Rsph, t) (36)

where the dyadic tensors S0(r,Rsph) and Q0(r,Rsph, ω0) are the two usual free-space
propagators that describe how an arbitrary dipole radiates electromagnetic energy (Landau
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Table 2. Contrast in the s polarized mode.

Field θ0 Sign Predicted Corrugation
intensity dependence of (>) contrast decay law

Electric negligible negative dark r−3

Magnetic weak positive bright r−2

and Lifshitz 1960a). In the near-field zone, i.e. when |r − Rsph| < λ0 = 2πc/ω0, they can be
expressed by

S0(r,Rsph) = 3(r − Rsph)(r − Rsph)− |r − Rsph|2I
|r − Rsph|5 (37)

and

Q0(r,Rsph, ω0) = iω0

c|r − Rsph|3
( 0 −(z−D) y

z−D 0 −x
−y x 0

)
. (38)

Current experimental measurements provide us with many images in which the small
surface protrusions generally appear with either dark or bright contrast, corresponding either
to a smaller or a larger number of detected photons. From equations (35) and (36) we are able
to derive four useful analytical expressions explicitly showing the dependence of the near-field
intensity constrast with respect to the external parameters. This can be achieved by defining
two dimensionless coefficients depending on the location of the observation point r:

>e(r) = |E(r)|2
|E0(r)|2 − 1 (39)

and

>m(r) = |B(r)|2
|B0(r)|2 − 1. (40)

When the observation point (which could be physically materialized by a sharp probe) is located
just on the top of the particle (i.e. when r = R0 = (0, 0, Z0)), both the sign and magnitude of
these coefficients provide direct information on the light confinement phenomenon occurring
around the single particle. These simple relations can be used to analyse both the electric and
magnetic contrasts near subwavelength dielectric particles. For example, for the electric part
we can write

>e,s = − 2α‖
(Z0 − R)3

{1 + o(|Z0 − R|6)} (41)

and

>e,p = 2α⊥(n2 sin2 θ0 + 1)

(n2 sin2 θ0 − 1)(Z0 − R)3
{1 + o(|Z0 − R|6)}. (42)

The main physical behaviours predicted by these relations as well as the two ones for the
magnetic part are summarized in tables 2 and 3.

Some comments can be made about these results.

(i) The more impressive success provided by these simple relations concerns the contrast.
Indeed, when dealing with subwavelength-sized localized objects, the contrast predicted
by the simple dipolar model is found in excellent agreement with available experimental
data on similar objects (Weeber et al 1996). Additionally, all physical behaviours gathered
in tables 2 and 3 are in agreement with the outputs produced by sophisticated ab initio
Maxwell’s equation solvers.
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Table 3. Same as in table 2 but for the p polarized mode.

Field θ0 Sign Predicted Corrugation
intensity dependence of (>) contrast decay law

Electric weak positive bright r−3

Magnetic strong negative dark r−2

rα
i
(ω)

p=1

p=2

r’

Z

X

Figure 10. Schematic of a surface described as a set
of polarizable centres αi(ω). In this simple model
we consider that the solid is composed of an infinite
number of atomic planes separated by a constant
spacing D.

(ii) In the p polarized mode, equation (40) predicts subwavelength-sized magnetic field
intensity patterns with a strong and dark contrast that dramatically depends on the incident
illumination angle θ0. Although the complete angular investigation of this peculiar effect
has not been yet realized, these trends seem to be in qualitative agreement with recent
local measurements performed with metallic coated tips.

Before closing this discussion, let us note that other alternative methods lead to similar
conclusions. In particular, the reciprocal-space perturbative approach based on Rayleigh
approximation confirms this analysis (Barchiesi et al 1996).

3.2. Fluctuating near-field variation induced by surface corrugation

As illustrated in the previous section, the surface topography variations affect the intrinsic
structure of the near-fields. Consequently, in the presence of such surface features, the
spontaneous fluctuating field described in section 2.3 loses a part of its lateral invariance
properties and presents specific localized distortions. From a fundamental point of view, the
proper description of this effect involves including in the general relation (18) a relevant form
of field susceptibility S(r, r′, ω) able to account for surface corrugation. This quantity can be
split into two contributions describing both the continuous and the corrugation part associated
with the sample:

S(r, r′, ω) = S(r, r′, ω) + S̃(r, r′, ω). (43)

At this stage, different descriptions can be adopted. For example, atomic scale corrugation
occurring near a well defined surface can be treated as a discrete distribution of polarizable
centres (see figure 10). The simplest approximation consists of the evaluation of S(r, r′, ω)
by assuming an additive law between each polarizable centres. This leads to

S(r, r′, ω) =
∑
i

∫
v

S0(r, r
′′, ω) · αi(ω) · S0(r

′′, r′, ω)δ(r′′ − ri ) dr′′ (44)

where ri represents the atom positions in the solid and S0 the vacuum dipolar propagator
defined in (37). In each atomic plane (labelled by the subscript p) the periodic arrangement of
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the atoms may be characterized by a set of translation vectors ri ≡ rp,α,β = α(A, 0)+β(0, A),
in which A, the surface lattice parameter, has already been defined in section 2.1. In the case
of a perfect crystal, the relation (44) can be elaborated further by exploiting the translational
invariance of the atomic planes parallel to the surface. This property can be expressed by a
Fourier expansion of the Dirac distribution (Steele 1974)∑
i

δ(r′′ − ri ) ≡
∑
p,α,β

δ(r′′ − rp,α,β) = 1

A2

∑
p

δ(z′′ − zp)
∑

g

exp(ig · l) (45)

where g represents a surface reciprocal lattice vector (see section 2.1). After some algebraic
manipulations based on the well known Weyl expansion (Agarwal 1975) of the vacuum dipolar
propagator S0 and on the assumption that the atoms are all defined with the same dynamical
polarizability α(ω), we obtain the following relation:

S(r, r′, ω) = α(ω)

A2

∑
p,g

∫
P(k, g)e−ik·le−ikg ·l′ dk (46)

where the function P(k, g) is given by

P(k, g) = K · K@
gKK@

g

k|k + g| e−k(z−zp)e−kg(z′−zp), (47)

with kg = k + g, K = (ik, k), and Kg = (ikg, kg). Finally, as anticipated by equation (43),
we can separate this relation into a continuous part (g = 0) and a corrugation part (g �= 0).
We find then two simple relations:

S(r, r′, ω) = 2α(ω)

A2

∑
p

∫
dk KK@e−ik·(l−l′)e−k(z+z′−2zp) (48)

and

S̃(r, r′, ω) = 2α(ω)

A2

∑
p,g1>0,g2 �=0

∫
dk P(k, g) cos(kg · l′ − k · l) (49)

where the dyadic character of these two response functions is accounted for by the juxtaposition
of two vectors K and Kg, or K@ and K@

g. It may be shown without formal difficulty that
the continuous part S is equivalent to the bulk expression (20) introduced in section 2.3 to
materialize a perfectly planar sample. Indeed, in the asymptotic case where the atomic planes
are assumed to be infinitely close, it is then possible to replace the sum over p by an integral∑

p

�⇒ NA2
∫ 0

−∞
dzp and α(ω) � ε(ω)− 1

4πN
(50)

where N and ε(ω) are the atomic density and the local dielectric constant of the solid. By
using these relations to elaborate equation (48) further, we recover the bulk expression (20).
Therefore, the corrugation contribution (49) improves this result by introducing an additional
structural term. According to the formalism exposed in section 2.3, we have now gathered all
the ingredients needed to describe the effect of atomic surface corrugation on the spontaneous
fluctuation field. Finally, substitution of (49) into (18) introduces a new contribution

Ẽ(r, r′, ω, ω′) = h̄

2π
coth

{
h̄ω

2KBT

}
Im [Tr S̃(r, r′, ω)]δ(ω + ω′), (51)

which gives

Ẽ(R, ω, ω′) = h̄

πA2
coth

{
h̄ω

2KBT

}
Im [α(ω)]

∑
p,g1>0,g2 �=0

F(Z, g) cos(g · L)δ(ω + ω′), (52)
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Figure 11. Schematic of the lateral variation of Ẽ(R) along
a surface atomic row.

when the two observation points coincide (i.e. when r = r′ = R = (L, Z), see figure 11. For
a given spatial harmonic g = 2π

A
(g1, g2) (see equation (5)), the function F(Z, g) occurring in

relation (52) yields the decay rate of the corrugation part of the FNF. It may be shown that this
quantity is proportional to a second-kind Bessel functionK2 of integer order (Abramowitz and
Stegun 1970):

F(Z, g) = 3π

2(Z − zp)2
g2K2[g(Z − zp)]. (53)

Outside of the electronic cloud zone of the surface atoms, the function F(Z, g) tends to adopt
an exponential form with respect to the observation distance Z:

F(Z, g) � 3π
3
2

2(Z − zp)
5
2

e−g(Z−zp). (54)

In consequence, the two first major contributions to equation (52) (i.e. when (g1, g2) = (1, 0) or
(0,1)) yield a maximun corrugation decay lengthη−1 = A/2π proportional to the surface lattice
parameter. In addition, equation (52) clearly indicates, through the modulation factor cos(g·L),
a perfect commensurability between the surface atomic array and the lateral variation of the
electromagnetic FNF. Actually, this important property remains valid for a large wavelength
range λfluc = ω/c of fluctuating fields for which

λfluc � A (55)

and, as will be shown later, this singular property is at the origin of the simple image–object
relation in van der Waals atomic force microscopy.

At this stage an important comparison with another physical situation may be made. In fact,
a similar behaviour in which the optical near-field pattern resembles the surface topography
has already been predicted (Marti and Möller 1995) and observed in NFO (Weeber et al 1996).
In the precise case of NFO, this phenomenon can occur only if the two following conditions
are satisfied simultaneously (these conditions correspond to the case of figure 8(b)):

(i) The surface structures must display subwavelength lateral size. It was indeed
demonstrated that when the lateral dimensions of tiny objects are significantly smaller
than the incident wavelength, the interference pattern collapses and the optical electric
near-field intensity distribution tends to be fairly well localized around the objects.

(ii) The polarization state of the incident light must be chosen so that the excitation electric
field is perpendicular to the surface of the sample.

4. Detection and observation of the near-field

4.1. General concepts

After inspection of the principal near-field properties, we turn to the crucial problem of local
detection. Basically, the detection process is made possible thanks to a fundamental principle
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Table 4. Some examples illustrating the relationship between physical near-field and detected
physical quantity.

Surface near-field

Electrostatic Optical surface Mean square Electronic wave
near-field evanescent fluctuating function at metal
E field {E; B} near-fields E ψ(r)

Physical
detected Force Photon energy Force Electric current
quantity flow

Magnitude
order nN ∼109 Ph s−1 nN nA

Experimental AFM SNOM Noncontact STM
device PSTM/STOM AFM

that may be stated as follows: ‘When some external material body is introduced into the near-
field zone the initial equilibrium state is changed’. Following this equilibrium state breaking
off, and depending on the nature of the near-field under consideration, two kinds of specific
physical phenomena may be expected:

• In any case, a force will occur between the sample and the external physical probe.
The influence of such forces during the STM acquisition stage was recognized from the
beginning of STM but the first scientist who had the idea of evaluating and exploiting
these forces for atomic surface imaging purposes was Gerd Binnig in 1985 (Binnig et al
1986, Rugar and Hansma 1990).

• Depending on the near-field detection device, the appearance of this local force may be
accompagnied by a tiny particle flow (electrons or photons) passing through the junction
formed by the tip apex and the sample (see table 4).

Historically, in the optical range, the first experiment of near-field detection was reported
three centuries ago by Isaac Newton. In a renowned experiment, Newton demonstrated for the
first time that the total reflection of a light beam could be frustated by approaching a second
prism close to the first transparent sample. In this case, the beam intensity seems to be captured
by the second material and decays exponentially on increase of the spacing between the two
bodies. Today this strange phenomenon can be explained with classical Maxwell equations
by applying standard boundary conditions over the two interacting surfaces. This so-called
optical tunnelling effect as well as its relation with the above-mentioned Newton experiment
are well described in a recent and pedagogical review by Courjon (Courjon and Bainier 1994).
Finally, let us note that, independent of the advent and success of scanning probe methods,
the optical tunnelling effect had already produced many other powerful applications in the
spectroscopy of molecular layers (Chen et al 1976, Pettinger et al 1979) as well as in confocal
microscopy of surface samples (Guerra 1990, Guerra et al 1993).

In solid state physics, the observation of electrons tunnelling through thin metal–insulator–
metal barriers provide a second illustration of near-field detection performed without accurate
control of the barrier width (Frenkel 1930, Esaki 1957, Giaever 1960, Solymar 1972, Gauthier
and Joachim 1992). About 18 years ago, an important breakthrough was achieved by Binnig,
Rohrer, Gerber and Weibel who proposed the first successful tunnelling experiment with an
externally and reproducibly adjustable vacuum gap. This preliminary experiment opened the
way for the first generation of local probe devices in which the near-field is locally converted
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into one or several measurable quantities thanks to a sharp-pointed detector (Behm et al
1990).

Nowadays, the current local probe instrumentation gives access to a more and more
accurate representation of the lateral variation of the different surface near-fields by performing
ultimate reductions of the junction lateral size. This progress is accompanied by considerable
improvement in the tip–sample distance control. This new generation of surface analysis
tools forms the so-called LPBMs which provide us with a wealth of new opportunities for
characterization and modification of small objects at the nanometre scale. Simultaneously
with the rapid advances of experimental techniques, an increasing demand has been felt
for understandings of the relationship between the different forms of near-fields localized
at the surface of materials and the detected signals obtained by raster scanning accross the
sample. With the emergence of such instrumentation mainly oriented towards high-resolution
microscopy, the major question to be addressed was the key issue related to the image–object
relation. Depending on the nature of the near-field under consideration, this question received
more or less complete answers:

(i) For example, in NFO, the physical content of the images is still debated. In this precise
case, the difficulty seems to originate from the specific nature of the detection process
(Weeber 1996, Dereux et al 1998). Indeed, recent observations indicate that when the
detector extremity is either completely or partially covered with a thin metallic coating,
both theoretical modellings and experimental measurements supply NFO images that do
not follow the expected optical electric near-field intensity.

(ii) In SFM, in spite of impressive progress in image simulations of ordered atomic surface
(Shluger et al 1994, Shluger et al 1995, Tang et al 1998), some points remained unresolved.
In particular, the recently achieved super-resolution in noncontact SFM mode is not
completely assessed (Giessibl 1995, Giessibl 1997) and pertinent dynamical models are
being developed (Aimé et al 1999).

(iii) Unlike what happens with other LPBMs, the STM instrumentation currently benefits
from an excellent theoretical support being particularly efficient for adsorbate image
recognition.

The main purpose of this section is to illustrate three different configurations based
respectively on electronic, photonic and mechanical interactions, the fundamental mechanisms
existing between unperturbed near-fields and detected signals.

4.2. Local detection in NFO

Understanding the optical tip–sample interaction surely presented one of the most serious
challenges at the beginning of NFO microscopy research and many different approaches have
been devoted to this problem (Van Labeke and Barchiesi 1992, Van Labeke and Barchiesi
1993, Girard and Dereux 1996, Greffet and Carminati 1997). In this section, the problem of
the local detection in NFO will be reviewed. We start with a simple pedagogical model based
exclusively on analytical materials. In a second step, we give some indication of the possibility
of implementing an operational three-dimensional numerical scheme.

4.2.1. NFO interaction with a spherical detector. The conversion of evanescent waves into
propagating waves can be performed with a dielectric stylus placed in the vicinity of the surface
of the sample (Reddick et al 1989, Vigoureux et al 1989). The most simple picture to mimic
this situation consists of replacing the pointed detector by a single dielectric sphere of radius
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Figure 12. Geometry of a subwavelength
spherical detector in interaction with the
surface evanescent wave. The vector Rp refers
the position of the spherical tip and the symbol
A represents a surface located in the ‘wave
zone’ inside the upper part of the detector. The
vector R defines the position of this surface
with respect to the centre of the spherical tip
and β0 represents its aperture angle.

a (see figure 12). When the tip is brought near the surface, it acquires a fluctuating dipole
moment mtip(Rp, t) proportional to the surface electric field. It is given by

mtip(Rp, t) = α(ω) · E(Rp, ω) exp(iωt) (56)

where α(ω) represents the dipolar polarizability of the spherical probe. This quantity can be
expressed in terms of the optical dielectric constant εtip(ω) of the material

α(ω) = a3

{
εtip(ω)− 1

εtip(ω) + 2

}
. (57)

In turn, this fluctuating dipole scatters in the upper part of the tip a propagating wave of intensity
proportional to†

I (Rp) = ω2

4πc3

∫
C

dθ dφ
sin(θ)

R2
0

[R0 ∧ mtip(Rp, ω)]
2. (58)

After performing integration over a conical aperture of angle β0 (see figure 12), we find the
following analytical expression:

I (Rp, β0) = I1(Rp, β0) + I2(Rp, β0). (59)

The two contributions are given by (Landau and Lifshitz 1960a)

I1(Rp, β0) = ω2

2c3

{
2

3
(1 − cos3(β0))[m

2
tip,x +m2

tip,y]

}
(60)

and

I2(Rp, β0) = ω2

2c3

(
2

3
− 3

4
cos(β0) +

1

12
cos(3β0)

)
[2m2

tip,z +m2
tip,x +m2

tip,y]. (61)

Two important limiting cases can be defined from these simple relations.

(i) The small aperture angle limit. In this particular case, the intensity becomes independent
of the scattering dipole component perpendicular to the surface

I (Rp) ∼ β2
0 [m2

tip,x +m2
tip,y]. (62)

Consequently, for a detector of very small aperture angle, the detection process could
introduce a strong anisotropy able to mask some components of the vectorial near-field.

† In the NFO literature the fact of decoupling the probe from the sample corresponds to the passive dipolar probe
approximation (Greffet and Carminati 1997).
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Figure 13. Schematic drawing illustrating how we can elaborate a realistic 3D model. (a) We start
with a high-symmetry reference system composed of three dielectric media of optical index n1, n2
and n3. (b) The symmetry is then lowered by introducing additional pieces of matter inside the
gap. Some years ago, a similar construction was proposed by A Lucas to describe the detection
process in STM.

(ii) The large aperture angle limit (β0 = π/2)

I (Rp) = 2ω2

3c3
|mtip(Rp, ω)|2 ≡ 2

3

{
ωαA0Ts

c

}2

e−ηRp , (s-mode). (63)

This simple relation clearly indicates that, within the passive dipolar probe approximation,
the detected intensity can be considered as proportional to the near-field square. It may
be applied to explain qualitatively many experimental situations.

Based on a simple model, these relations show explicitly the importance of the physical
detector parameters to the spatial dependence of the intensity.

4.2.2. Beyond the dipolar passive probe approximation. The qualitative analysis previously
exposed must be completed by a more realistic description able to properly account for both
finite size effect and tip–sample coupling. Very recently, an original approach to this problem
has been detailed in a work by Ward and Pendry. In their paper, these authors employed a
transfer matrix method currently applied in the theory of photonic band gap. By using an
adaptative coordinate transformation they were able to model realistic SNOM tip designs and
to realize a comparative analysis of transmission efficiencies. This problem can be also tackled
with a peculiar adaptation of the integral representation of Maxwell’s equations (Girard and
Courjon 1990, Dereux et al 1991, Dereux 1991, Dereux and Pohl 1993, Girard 1998). First
we start from the known solutions associated with a simple planar optical junction formed by
three dielectric media of optical indices n1, n2, and n3 (with n1 > n2, see figure 13(a)). The
complete electromagnetic state of this junction can be obtained after applying the standard
boundary condition. Three quantities are needed to describe this initial state:

(i) the initial electric and magnetic fields {E0(r, ω),B0(r, ω)};
(ii) the field susceptibility of the bare junction S0(r, r

′, ω) (Agarwal 1975).

Now let us see how to evolve the initial electromagnetic state when a 3D microtip supported
by the output medium is inserted in the gap (see figure 13(b)) together with some structures
localized on the bearing sample (n1). As previously demonstrated (Girard 1998), the new
electromagnetic field state {E(r, ω),B(r, ω)} can be derived everywhere in the junction by
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introducing two generalized propagators labelled K(r, r′, ω) and L(r, r′, ω), respectively. If
the whole junction responds linearly to the excitation, the electromagnetic field can be described
by the two following linear relations:

E(r, ω) =
∫
v

K(r, r′, ω) · E0(r
′, ω) dr′, (64)

and

B(r, ω) =
∫
v

L(r, r′, ω) · E0(r
′, ω) dr′ (65)

where the integral runs over the volumes occupied by the microtip and the objects. The dyad
K(r, r′, ω), also called the generalized electric field propagator, can be formulated in terms
of the optical field susceptibility tensor S(r, r′, ω) associated with the entire system described
by figure 13(b):

K(r, r′, ω) = δ(r − r′) + S(r, r′, ω) · [χtip(r
′, ω) + χobj(r

′, ω)] (66)

where χtip and χobj are the linear electric susceptibilities of the microtip and the object located
in the gap. The second propagator L(r, r′, ω) establishes a direct relation between incident
electric field and local magnetic field. When dealing with nonmagnetic materials it may be
expressed as a functional of K(r, r′, ω):

L(r, r′, ω) = δ(r − r′)
ik0

Fr′ +
∫
v

Q0(r, r
′′, ω) · [χtip(r

′′, ω) + χobj(r
′′, ω)]

×K(r′′, r′, ω) dr′′ (67)

whereFr′ labels the matrix form of the curl operator and Q0(r, r
′, ω) represents the so–called

electric–magnetic mixed susceptibility of the bare junction (Girard 1998). After a solving
procedure of (64) and (65) based on a recursive algorithm of Dyson’s equation associated to S,
we can generate the electromagnetic field {E(r, ω),B(r, ω)} everywhere in the system. The
time-average Poynting vector field at the exit of the device is then defined by

P(r) = 1
2 Re {E(r, ω) ∧ B∗(r, ω)}. (68)

Finally, from the information contained in (68), we are able to define a transmission coefficient
characterizing the optical transparence of the device. This quantity will be normalized with
respect to the incident energy Einc crossing a surface A located inside the input medium and
centred around the microtip (see figure 13(b)):

T (Z0, θ0, λ) =
∫
A

P(l, Z0 + ZA) · uz dl

Einc
(69)

where ZA defined the location of the surface A in the output medium of the exit medium,
l = (x, y) and uz is a unit vector directed along theOZ axis. The numerical method described
above is now sufficiently mature to faithfully reproduce different experimental processes
at work in real experiments (imaging, local spectroscopy, optical binding forces, . . .). In
particular, the possibility of including the 3D character of the devices simultaneously with
a description of their photonic energy transfer, constitutes a significant advance on previous
numerical frameworks.

4.3. Tunnel current detection in STM

For several years, because of the growing success of the STM, this phenomenon has been
extensively discussed in the literature (Tsukada et al 1991b, Güntherodt and Wiesendanger
1993, Güntherodt and Wiesendanger 1994). Consequently, we limit ourselves to some
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Figure 14. Schematic drawing illustrating the progressive approach of two planar metal interfaces.

fundamental aspects that concern the physical mechanisms governing the conversion of a
permanent electronic surface charge density into a direct tunnel electron current resulting
from the transfer of electrons from one electrode to another electrode.

4.3.1. The planar model. To illustrate the STM conversion process, we start with the
usual planar junction configuration depicted in figure 14. In fact, when the second material
significantly enters the near-field zone of the first metal, in the same way as a photon flow
occurs in Newton’s prism experiment, an electronic current can be expected in the circuit.
At zero bias voltage, the average number of electrons transferred from left to right and from
right to left is identical and, consequently, the net electronic current I (D) passing through the
junction is zero. In fact, in order to generate a permanent measurable current, a macroscopic
voltage V0 (see figure 15) must be applied to the device (Giaever 1974, Binnig and Rohrer
1982, Binnig et al 1984). The net current per unit area is given by the well known relation
(Duke 1969)

I (D, V0) = J1→2(D, V0)− J2→1(D, V0), (70)

with

J1→2(D, V0) = e

4π3

∫ ∫ ∫
dkz dk‖

1

h̄

∂

∂kz
T1→2(Ez, V0,D)f1(E)(1 − f2(E + V0)), (71)

and

J2→1(D, V0) = e

4π3

∫ ∫ ∫
dkz dk‖

1

h̄

∂

∂kz
T2→1(Ez, V0,D)f2(E + V0)(1 − f1(E)), (72)

where k and E represents both the wavevector and the energy of a given electron, T1→2 and
T2→1 are the usual transmission coefficients and f1/2 the Fermi–Dirac distributions of the two
metals. A transparent introduction to the basic theoretical background prior to STM is also
available in (Klein and Sacks 1992).

These relations characterize the tunnel properties of an idealized MVM planar junction.
They can be used to reproduce the I (V0) characteristic: for small applied voltage, the I (V0)

characteristic follows the usual linear law (see figure 16)

I (V0) = ϒV0 (73)

where the conductance ϒ is proportional to the penetration coefficient exp[−2ηD] associated
with the charge density of the left electrode (labelled (1) in figure 15) (the inverse decay length
factor η has already been defined in section 2.4). Beyond this linear regime, the slope of the
curve increases rapidly, to finally join the so-called Fowler and Nordheim electronic emission
regime (Fowler and Nordheim 1928).
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Figure 15. Typical potential energy curve occurring when the junction is biased by an external
electric potential V0. In this case the net current flows from left to right.
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Figure 17. Schematic decomposition of the tunnel barrier into a planar and a localized part.

4.3.2. Tunnelling through three-dimensional localized barrier. Since the beginning of the
1980s, the growing need for both efficient and reliable numerical schemes able to guide and
interpret actual STM measurements has led to different classes of three-dimensional models.
The corresponding material was reviewed by Tsukada et al (1991b).

Among the different possibilities compatible with a relative low cost in terms of numerical
implementation, the effective barrier scheme treated in the previous section 4.3.1, was extended
by Lucas et al as early as 1988 to describe 3D models of tunnel junctions (Lucas et al
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1988, Lucas 1990, Lucas et al 1994). In fact, the presence of a pointed metallic system
placed in interaction with a sample displaying a corrugated surface (atomic or multi-atomic
steps, terraces, . . .) made the application of a standard boundary condition method difficult.
To overcome this difficulty, Lucas proposed to start from the known solution of a highly
symmetrical system, for example the pair of metallic plane electrodes considered in the
previous section. The main ingredients associated with this simple geometry are both the
electronic wavefunctionJ0(r, E) and the Green function G0(r, r

′, E) of the reference system
(see figure 17(a)). Note that these two quantities can be easily deduced from the simple
formulation already evoked in section 4.3.1. For example, the relation between G0(r, r

′, E)
and the 1D Green function G1D(r, r

′, E) of the biased barrier is just given by the following
Fourier transform:

G0(r, r
′, E) = 1

4π2

∫ ∫
G1D

(
r, r′, E − h̄2

2m
(k2
x + k2

y)

)
× exp[−i(kx(x − x ′) + ky(y − y ′))] dkx dky. (74)

In a second stage, similarly to what it was done in NFO (see section 4.2.2), additional
materials can be introduced inside the bare reference system (for example, tip apex plus surface
structures). The new electronic wavefunctionJ(r, E) can then be computed self-consistently
by introducing the generalized propagatorL(r, r′, E) associated to the complete junction (see
figure 17(b)):

J(r, E) =
∫
L(r, r′, E)J0(r

′, E) dr′, (75)

with

L(r, r′, E) = δ(r − r′) +
∫

G(r, r′, E);V (r′) dr′, (76)

where;V represents the variation of the potential barrier when passing from the bare reference
system to the actual system as schematized in figure 17. The response function G(r, r′, E)
defines the 3D electronic Green function of the complete junction. It verifies the Dyson
equation:

G(r, r′, E) = G0(r, r
′, E) +

∫
G0(r, r

′′, E);V (r′′)G(r′′, r′, E) dr′′. (77)

In complete analogy with the standard procedure applied to solve the tunnel effect with photons
(see section 4.2.2), this equation can be handled with powerful recursive algorithms (Martin
et al 1995, Pendry et al 1991). The ability of this procedure to deal with large surface structures
is, of course, a fundamental advantage when studying the physical interaction between biased
STM tips and corrugated surfaces. Such an algorithm avoids the numerical inversion of a very
large matrix (3N × 3N) (whereN is the total number of discretization cells located inside the
bare reference system) by reducing the self-consistent problem into a succession of (3 × 3)
matrix inversions. This iterative scheme is therefore relevant for all studies concerned with
a great number of degrees of freedom because it is much less critical in terms of numerical
stability. It is particularly well suited for considering low-symmetry systems for which first-
principle calculations can rapidly become intractable.

After solving equations (75)–(77), we can generate the electronic wavefunction
everywhere in the junction. The current density distribution is then given by the standard
relation (given for T = 0):

J(r) =
∫

dE
∫

dk(J@(r, E)∇J(r, E)− (J(r, E)∇J@(r, E)) (78)
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where the first integral must be performed on the energy range Ef − V0 � E � Ef , and
the second one on all incoming electronic waves directed towards the barrier (Lucas et al
1992). As expected, such an idealized model, essentially based on the concept of local
effective barrier, is not able to reproduce all the complex situations encountered in most STM
experiments (localized electronic state effects, atomic corrugations, chemical specificity of
adsorbed molecules). Nevertheless, it may be a valuable tool if we want to couple in a simple
way the tunnel current with others physical quantities (force, tip–sample optical excitation, . . .).

4.3.3. More realistic descriptions based on atomic descriptions of the junction. As already
mentioned, unlike what happens with electromagnetic fields for which incident wavelengths
are much larger than atomic spacings in materials, a continuous barrier model cannot describe
fully the different aspects of the detection mechanism in STM (Stoll 1984, Baratoff 1984, Stoll
et al 1984, Sacks et al 1987, Lucas et al 1992). For this reason, many physicists developed
alternative methods that rely on atom-by-atom description of the surface, tip and adsorbates
(Tersoff and Hamann 1985, Tekman and Ciraci 1989, Tsukada et al 1991a, Sautet and Joachim
1991, Chavy et al 1993, Joachim et al 1992, Joachim et al 1995), or at least of the adorbates
(Lang 1986, Lang 1994).

Among these different approaches, the ESQC technique developed as early as 1988
(Joachim 1988, Sautet and Joachim 1988) appears to be particularly well suited to treating the
challenging problem of electron tunnelling through adsorbates ranging from simple adatoms
to complex molecules. In this context numerous systems have already been investigated:

(i) rare gas (Bouju et al 1993),
(ii) small molecules (Sautet and Joachim 1991, Sautet and Bocquet 1994, Sautet and Bocquet

1996),
(iii) large adsorbates (Sautet and Joachim 1992, Chavy et al 1993).

The ESQC method offers a means of studying the transmission of elastic electrons through
a localized defect inserted in an infinite periodic medium. When first proposed (Sautet and
Joachim 1988), the method was applied to the study of the transmission of electrons through
a molecular switch. More recently, in 1991, the method was further developed so that it
could allow the study of tunnelling electrons in STM. In this case, the defect consists of
the apex of the STM tip, the adsorbate to be imaged and the surface atoms of the substrate
(see figure 18). Within this quantum chemistry based method, the electronic structure of the
tip apex junction is implemented with an appropriate atomic orbital description compatible
with currently available computation resources (for example, by constructing an extended
Hückel Hamiltonian with a double zeta basis set). The tunnelling current intensity can be then
calculated within the ESQC approximation by applying the generalized Landauer formula
(Landauer 1970):

I (V0) = e2

πh̄
T (Ef ) ≡ e2

πh̄
Tr{T (Ef ) · T +(Ef )} (79)

where the multichannel transmission matrix T is calculated from a nonunitary transformation
of the spatial propagator describing the scattering the Bloch waves on the STM junction. For
large molecules, the matrix elements of this propagator are obtained from a Hamiltonian given
by the extended Hückel molecular orbital method.

Let us emphasize that this real-space methodology can integrate other specific
functionalities. For example, it makes it possible for the local mechanical deformation to
be taken into account during the approach of the STM tip apex (Joachim et al 1995, Pizzagalli
et al 1997, Pizzagalli et al 1998). To illustrate this aspect we present in figure 19 two scanlines
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Figure 18. Schematic drawing illustrating the basics of the ESQC method.

computed above three Xe atoms adsorbed on the (110) face of copper. The weak tunnelling
current I passing through the tip apex–Xe3–surface junction is calculated from the STM-
ESQC technique. The tip apex is a cluster of ten copper atoms [111] oriented. This cluster is
adsorbed on the (110) surface of the tip bulk. The other part of the junction is a Cu(110) surface
supported by its bulk. The Xe electronic structure are described by their filled 5p and empty 6s
atomic orbitals. These 5p orbitals are required to properly describe the Xe3 molecular orbitals
at small Xe–Xe distances when the Xe atoms are in close electronic interaction with the tip
apex. Note that this result is found in fairly good agreement with experimental available data
(Eigler and Schweizer 1990, Eigler et al 1991b). To conclude this important topic, we illustrate
the ESQC capability with an example of realistic STM image computation of large molecules
(constant current mode) (see figure 20). The modelled system consists of a single hexa-tert-
butyl decacyclene (HB-DC) molecule adsorbed on a Cu(100) surface. Recently, experimental
vizualisation of this molecular species was reported and similar six-lobed images were always
observed if the molecules are blocked in the local molecular surroundings generated by other
adsorbed molecules (Gimzewski et al 1998).

4.4. Conversion of FNF into measurable force field

We close our enumeration of near-field detection phenomena by analysing further the physical
mechanisms responsible for the conversion of spontaneous FNF into measurable force field.
According to the content of section 3.2, we know that atomic surface structures are encoded in
the lateral variation of the mean square fluctuating field E(r′, r′′, ω′, ω′′) calculated at a single
position R = r′ = r′′. Similarly to what happens with any other kind of near-field, we do not
access to this information because of the evanescent behaviour of E when going far away from
the sample. To be detected, this field must also be coupled with an additional element—the
probe tip—introduced into the surface fluctuating field (see figure 21). Following the well
known work by Lifschitz, it is well established that the force F(R) arising from this coupling
is known as the van der Waals dispersion force. Let us examine how this force can be related to
the surface fluctuation field E(R, ω′, ω′′). Within a simplified picture† we can write that each
infinitesimal element δv located at a position rt inside the tip acquires an additional energy
induced by all fluctuating field components (ω′, ω′′) (Mahanty and Ninham 1976)

δU(R + rt ) = − 1
2

∫ ∫
exp i(ω′ + ω′′)tχtip(rt , ω

′) · E(R + rt , ω
′, ω′′) dω′ dω′′δv (80)

where χtip(rt , ω) represents the local electric susceptibility of the probe tip. In the case of a
continuous description of the tip material, it is given in terms of the dielectric permittivity

† This approximation consists of neglecting the possible correlation between each element that composes the detector.
In other words, the boundary conditions on the surface tip are not completely satisfied. This approximation might
easily be removed by applying the fully self-consistent model described in Girard and Bouju (1991).
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Figure 19. Scanlines computed above three Xenon atoms aligned along the [1,-1,0] row of Cu(110)
surface. The calculation is performed at constant current and voltage (Iref = 1 nA andV0 = 10 mV).
Dashed curve: fully relaxed calculation; solid curve: same calculation, keeping frozen the adsorbate
in the initial equilibrium configuration (from X Bouju, C Joachim and C Girard, unpublished
results).

Figure 20. Example of an STM image calculated with the ESQC method. The molecule consists
of a central conjugated decacyclene core with six t-butyl legs attached to its peripheral anthracene
components. The molecule is supported by a Cu(100) surface. (Image courtesy of H Tang.)

(This figure is in colour only in the electronic version, see www.iop.org)
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Figure 21. Basic geometrical arrangement for the calculation
described in this section.

εtip(ω), i.e. χtip(rt , ω) = (εtip(ω) − 1)/4π for all points rt located inside the tip, and
χtip(rt , ω) = 0 outside. By contrast, if we adopt an atomistic picture of the matter, χtip(rt , ω)

must be expressed in terms of the in situ polarizabilities αj (ω) of the atoms that compose the
detector

χtip(rt , ω) =
∑
j=1,n

αj (ω)δ(rt − rj ). (81)

From this last relation we can then calculate the tip–sample dispersion energy:

U(R) ≡
∫
vtip

δU(R + rt ) drt = − 1
2

∫ ∫
ei(ω′+ω′′)t dω′ dω′′

n∑
j=1

αj (ω) · E(R + rj , ω
′, ω′′).

(82)

Now, according to the discrete representation previously developed in section 3.2 we can
further elaborate this relation. After using equations (48) and (52), and applying standard
algebra procedure available in specialized textbooks (Mahanty and Ninham 1976), we can
split the energy into both continuous and corrugation parts. The limit T −→ 0 yields

U(R) = U(R) + Ũ (R), (83)

where

U(R) = −2πCdis

A

n∑
j=1

∑
p

1

4(Z + zj + zp)4
, (84)

and

Ũ (R) = −πCdis

2A

n∑
j=1

∑
p

∑
p,g1>0,g2 �=0

× cos g · (L + lj )

(
g

2(Z + zj + zp)

)2

K2(g(Z + zj + zp)), (85)

where the coefficients, Cdis = 3h̄
π

∫
αtip(iu) · α(iu) du, that describe the dispersion coupling

efficiency between tip and surface atoms are available for a large number of atomic pairs in
the literature (Vidali and Cole 1981, Ihm et al 1987). In spite of their simplicity, these two
relations grasp the main qualitative features of the van der Waals force microscopy and thereby
illustrate well how the initial FNF can give rise to lateral forces,

F(L, Z = cst) = −∇LŨ (L, Z), (86)

modulated by the atomic rows of the sample. Near low Miller index faces of ionic crystals such
corrugation forces are relatively weak (e.g. ∼10−11 N for a diamond tip scanning a NaCl (100)
face at a constant height of 4 Å) and consequently remain difficult to detect. Recently, new
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composite systems formed of C60 thin films of ordered monolayers adsorbed on gold substrate
have displayed important van der Waals corrugations (∼5 × 10−10 N) easy to detect in AFM
(Sarid et al 1992). Simulations based on an extension of the simplified formulation we have
outlined in this section were found to be in good agreement with experimental data (Girard
et al 1993).

5. Controlling the near-field decay length

5.1. Basic concepts

The main property of the tunnel effect (photonic or electronic) is its exponential decay versus the
barrier length (see equations (63) and (73)). This important property can be directly measured
with the STM or the PSTM, but also by more conventional measurements performed on metal–
insulator–metal or dielectric–air–dielectric junctions of adjustable thickness. In vacuum, the
inverse decay length η is governed by two physical quantities: (i) the wavelength associated
with the incident particles; (ii) the material parameters of the junction (optical indices or
metal work function). As early as 1959, it was even suggested by Shockley that an electronic
tunnel barrier could act like a filter for low incident energy of electrons (see figure 22). In
other words, for a given band of energy the exponential decay of the incident wave in the
barrier prevents efficient electron transfer. Following the first experimental evidence for
the tunnel effect through semiconductor layered structures (Esaki and Tsu (1970), see also
the Nobel Lecture by Esaki (1974)), we know that this decay can be strongly modified by
adding some localized states inside the barrier. This effect is quite intriguing because the
transmission coefficient T (E) can reach 100% when the incident energy is resonant with the
energy of one given localized state. Since the advent of the STM, many related phenomena
occurring at the nanoscale have been reported. For example, metallic point contacts formed
by bringing two metallic electrodes together show the expected quantum conductance of
about 12.9 KC corresponding to the opening of one channel of conduction (Ohnishi et al
1998, Yanson et al 1998). In addition, even in the absence of actual tunnel resonance,
many STM experiments performed above single atoms or single molecules clearly indicate
enhancements of several orders of magnitude of the tunnel conductance with respect to the
same measurement performed at the same tip–sample height but without adsorbate. This
singular effect can be described as a virtual resonant tunnel process via the molecular orbitals
of the adsorbate like that observed by tunnelling through a single C60 molecule (Joachim
et al 1995, Joachim and Gimzewski 1998). This phenomenon has also been investigated
by Eigler et al on a simple model system: the Xe–Ni(110)system (Eigler and Schweizer
1990, Eigler et al 1991b, Yazdani et al 1996). The first unoccupied orbital 6s of Xe atom
is simultaneously close to the vacuum level and far away from the metal Fermi level. In
this context, these authors have succeeded in measuring the tunnel resistance of two Xe
configurations:

(i) a single Xe atom located on a Ni(110) surface,
(ii) a Xe2 dimer aligned perpendicularly to the same surface.
From precise tunnelling current measurements they were able to deduce a resistance of 0.1

MC for the monomer, and of 10 MC for the dimer when aligned along a direction perpendicular
to the surface. These nice measurements confirm that we could intuitively predict that the
resistance of a Xe wire increases with its length. In Yazdani et al (1996) this effect was
inferred to the so-called off-resonance conduction regime which is nothing but the virtual
resonant process evoked above. In spite of the absence of proper tunnel resonant effects, this
virtual resonance with the 6s Xe levels produces a significant increase of the evanescent decay
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Figure 22. Typical transmittance of a square tunnel barrier. In this case, the barrier behaves as a
high-pass filter for energy greater than the barrier height (normalized here to unity).

length through the whole junction dressed by the Xe atoms with respect to a same junction
studied in the absence of atoms. Recently, new experimental evidence of nonresonant tunnel
transport through molecular wires has been reported. In this case, it was even possible to
spatially revolve the exponential decay law along the molecular wire by a lateral scanning of
the STM tip (Langlais et al 1999).

In fact, these apparently singular phenomena belong to the vast class of transport
phenomena through linear and partially ordered structures (Garcia and Garcia 1990, Freilikher
et al 1996, Kemp et al 1994). In this context, photonic analogies have also been described
in recent literature (Joannopoulos et al 1997, Girard et al 1998). After this brief introductory
survey, we will revisit the physics hidden behind the control of the near-field decay length
through matter.

5.2. Guiding the tunnel electrons

Many experiments performed in planar geometry or with an STM junction (Giaever 1960, 1974,
Mann and Kuhn 1971, Behm et al 1990, Güntherodt and Wiesendanger 1994) demonstrate
that the tunnel effect through matter is more efficient than tunnelling through vacuum. In
other words, there is always a finite energy gap in a material able to assist the tunnel transport,
while in vacuum there is only a forbidden continuum of electronic states. A very simple way
to describe this phenomenon is to calculate the electronic transmission coefficient through a
finite series of barriers and wells. For example, with just a single localized state by quantum
well (see figure 23), the system generates a new energy band just below the vacuum level.
For finite value of N the transmission coefficient T (Egap) between this band and the vacuum
level does not fall down to zero. Moreover, the transmittance curve T (Egap) calculated around
the energy gap Egap (see figure 24) always remains significantly greater with the multi-well
barrier than with the full barrier. Finally, let us note that an efficient control of the tunnel
transfer efficiency through large molecules can be performed after modulation of this gap by
some external action (Joachim and Gimzewski 1998). Such a control is not possible with the
continuum of states existing above a free barrier.
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Figure 23. (a) Barrier profile used in our simulations. This profile has been chosen in order to
create a single localized state in the quantum wells (dotted line). (b) Evolution of the transmittance
with increasing number of quantum wells.

In order to get more information about the mechanisms involved in this transfer mode,
we consider a linear structure made of a regular juxtaposition of elementary cells labelled
respectively A and B (see figure 25). This linear juxtaposition of dimers (A–B) is a necessary
condition to build up two bands separated by an energy gap. The width of this gap tends towards
a finite value χ when the numberN of cells (A–B) goes to infinity. As in the Bragg diffraction
phenomenon, the destructive interference effects are responsible for the occurrence of this
forbidden band of energy. This is a general result encountered in the theory of wave propagation
through ordered or partially ordered structures (Brillouin and Parodi 1956, Cohen-Tannoudji
et al 1977). The understanding of the mechanisms that control the decay of the transmission
coefficient due to these interferences has been treated in electron transfer theory (Joachim
1988) as well as for the tunnelling effect through low-gap semiconductor materials (Parker
and Mead 1968). Recently, important progress in atomic and molecular wire measurements
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Figure 25. Linear periodic structure connected to two metallic pads.

(Joachim and Roth 1997) and nano-optics technology (Joannopoulos et al 1997, Girard et al
1999), has stimulated this research.

A linear sequence of (A–B) cells connected to two electrodes can provide a simple model
of atomic or molecular wires (see figure 25). The transmission coefficient through the A–B
chain can be written as

TN(E) = |F11(E)|−2 (87)

where the transfer matrix F(E) is a non-unitary transformation of the spatial propagator
P(z+, z−, E) defined from the left to the right part of the A–B chain (Stein and Joachim
1987). The z+ and z− coordinates are defined in figure 25:[

5
d5
dz

]
(z+) = P(z+, z−, E)

[
5
d5
dz

]
(z−) (88)

where

P(z+, z−, E) = K(z+, E)P +(A(E)B(E))NP−K(z−, E). (89)

The functions5(z+) and5(z−) represent the wavefunction amplitudes inside the two metallic
pads. The elementary propagators K(z,E) are defined inside the pads. The two factors
P + and P− represent the interface propagators between the A–B chain and the electrodes.
The expression (A(E)B(E))N labels the spatial propagator that includes the electronic
couplings between all consecutive chain cells. The transfer matrix F(E) can be obtained after
diagonalization of the intrachain propagatorA(E)B(E) (Sautet and Joachim 1988). From (87),
we can write

TN(E) = 1

|ã11(E)b̃11(E)λ+(E)N + ã12(E)b̃21(E)λ−(E)N |2 (90)
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where λ+(E) and λ−(E) are the eigenvalues associated with the matrix A(E)B(E). The
coefficients ãij (E) and b̃ij (E) represent the matrix elements of the operator P + and P−

modified by the diagonalization of the propagator A(E)B(E). For large but finite values
of N , and because λ−(E) = λ+(E)

−1, we can write†

TN(E) = To(E)e
−Nη (91)

with

η = 2 ln(|λ+(E)|) (92)

where the exponential behaviour described in figure 24 is recovered. The secular equation
giving the eigenvalue λ+(E) is merely the standard second-order Kramers equation ;(E) =
Tr(A(E)B(E))2 −4 (Sautet and Joachim 1988). Therefore, the tunnelling inverse decay factor
in (91) is given by

η = 2 ln

(√
;(E) + 4 +

√
;(E)

2

)
. (93)

Note that for infinite wires, the;(E) polynomial can be used to characterize the electronic band
structure of the wire: the conduction bands for ;(E) < 0 and the band gaps for ;(E) > 0.
For systems of finite length, although no absolute band gap can be created, we can solve
this polynomial to adjust the parameters that control the decay. We must study the ;(E)
polynomial for the energy range where ;(E) > 0. There are two interests in such a control.
In a first application, one may be interested to find the chemical structure of material with a
large;(E) able to compete with standard insulators like SiO2 (Muller et al 1999). On the other
hand, these theoretical developments can be used to devise elongated molecules with small
;(E) in order to realize perfect molecular wires. For example, one can show that there exists
a minimum accessible value of η(Eg) depending on the energy gap between the two energy
bands of the A–B chain (Magoga and Joachim 1998). Here, the parameter Eg plays the role
of the barrier height in tunnelling through vacuum. The second parameter that can be defined
is the effective mass of the electron which controls η and which can be used to approach the
minimum available value of η for a given Eg . For example, by following the method of Franz
(Franz 1956) we can approximate;(E) by a parabolic law in the gap between the valence and
the conduction band of an insulator. Since λ+(E) = µ(E) + iq(E) with µ(E) = 0 in the gap
of the molecular wire, one gets directly q(E) = argsh(

√
(;(E))/2). For ;(Ef ) < 4, q(E)

can be expended in series of ;(E) and η(E) rewritten as

η(E) = 2

√
2m∗(E)
h̄2

(E − Eh)(El − E)

χ
(94)

where m∗(E) represents the effective mass of the tunnelling electron in the molecular wire.
Eh and El are the two energy band edges. Equation (94) generalizes the Franz two-band
dispersion relationship approximation used for tunnelling in the gap of a two-band material
(Franz 1956). It shows that the exponent in equation (92) for a molecular wire is controlled
by three parameters: the length L0 of the unit cell of the molecular wire made of a regular
structure of N cells, the HOMO–LUMO gap of the molecular wire and the effective mass of
the tunnelling electron. Independently of the gap, this mass can be controlled by fine design
of the molecular wire electronic structure (Magoga 1999).

† In this expression, the inverse decay parameter η is dimensionless because N represents the number of cells that
composes the wire.
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Figure 26. (a) Heterowire geometry where the cross section σ = 240 nm, N = 4, l1 = 240 nm
and l2 = 200 nm resulting in a structure with a total length L0 = 1.560 µm. (b) Variation of
the integrated LDOS of different rod-shaped optical structures versus the excitation wavelength
λ. The function ρ(λ) is obtained by numerical integration of the photonic LDOS over the volume
occupied by the rod described in (a). The three different curves have been obtained by increasing
the modulation of the index of refraction ;n = n1 − n2. Solid curve: ;n = 0. Dotted curve:
;n = 0.4. Dashed curve ;n = 1.

5.3. Subwavelength photonic transport through optical constriction

When describing the propagation of light in ordered or partially ordered mesoscopic material
structures, similar phenomena can be expected. For a given band of frequencies, the decay
range of evanescent waves may be commensurate with the material structure or with parts
of it. In this case, high values of the transmission coefficient of electromagnetic energy can
be expected. In other words, the overlap between evanescent components generated by two
material structures or defects establishes the physical link that can open new optical channels.
Impressive demonstrations of such collective proximity effects were extensively described in
the recent literature dealing with photonic crystals (Joannopoulos et al 1995). As it may be
intuitively understood, such periodic or pseudo-periodic materials modulate drastically the
amount of transferred energy as a function of the incident frequency. For example, it was
demonstrated both theoretically and experimentally that the introduction of well calibrated
microcavities inside a channel waveguide, modulates the optical transmittance of an initially
homogeneous waveguide (Joannopoulos et al 1997). The result of the modulation may be
viewed as a photonic band structure in which some localized states can be created by adding
localized defects in the periodic structure. Under the normal illumination condition of a
propagating light beam aligned along the longitudinal axis of the channel waveguide, the
introduction of new localized states can be used to create narrow transmission bands inside
the photonic gaps. In the context of near-field physics, we know that optical tunnelling effect
can be used to control the optical energy transfer between two transparent media (see previous
sections 4.2.1 and 4.2.2). The so-called PSTM is based on this simple principle (Reddick
et al 1989, Courjon et al 1989). As described in section 2.2, this particular illumination mode
is characterized by a typical exponential decay of the detected intensity when the detector
is moved away from the sample surface. The reduction of the tip to sample spacing below
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the tunnelling decay length makes the energy transfer possible. Nevertheless, as has been
demonstrated with a molecular wire (see section 5.2) or with a simple periodically indented
barrier (see figure 24), this decay can be strongly modified by introducing some localized
photon state inside the tunnel gap. In spite of similarities with tunnel electrons, some different
behaviour can occur with photons. In particular, the weakness of the equivalent potential
barrier seen by a photon travelling inside a structured dielectric medium prevents a strong
localization of the particle and favours the appearence of radiative losses. In order to get more
insight into this photonic analogy, let us consider the optical heterowire depicted in figure 26.
We define the heterowire geometry as a rod-shaped dielectric structure which displays a
variation of the optical index of refraction along its longitudinal axis. Figure 26(a) shows
an elementary heterowire made of only two materials setting up an alternating arrangement of
N cells of optical index n1 and N − 1 cells of optical index n2. The respective lengths of the
cells along the longitudinal axis are l1 and l2. The cross section of the wire has a square shape
of side σ . Complete spectroscopic information can be extracted from the calculation of the
photonic local density of state LDOS d(r, ω) of this sytem. This scalar quantity is deduced
from the electric field susceptibility S(r, r′, ω) of the heterowire†

d(r, ω) = 1

πk2
0

Im Tr S(r, r, ω) (95)

where k0 = ω/c is the wavevector modulus in vacuum and Im denotes the imaginary part.
Solid state physics applies the concept of LDOS to nonrelativistic electrons so that the LDOS
corresponds to the density of probability to find an electron of energy h̄ω at the point r of
the solid. This function is directly related to the square moduli of all possible electronic
wavefunctions associated to this energy (Economou 1983). In the case of photons, different
formulations of the LDOS can be proposed depending on the reference field. The most
widely used formulation relies on the calculation of the electric field susceptibility. When this
quantity is defined on the basis of any kind of mixed field susceptibility, such a straightforward
relation to the electric field is no longer possible. However, in any case, the LDOS is the only
quantitative way to describe the continuous part of the spectrum of any system independently of
the excitation mode. In the context of optics, this means that the LDOS provides spectroscopic
information which is intrinsically independent of the particular illumination mode (Martin et al
1999).

Using equation (95), it is now possible to determine the density of electromagnetic
eigenmodes by integrating the LDOS over the volume of the optical heterowire:

ρ(ω) =
∫
v

d(r, ω) dr. (96)

Applying an appropriate discretization procedure on the whole volume occupied by the optical
wire (Girard et al 1999), this last equation may be rewritten as

ρ(ω) = 1

πk2
0

n∑
k=1

VkIm Tr S(rk, rk, ω) (97)

where Vk represents the volume of the kth discretized cell.
For a given system, a preliminary analysis of this function allows the photonic bands to be

identified (see figure 26(b)). Figure 26(b) provides a first numerical example of the evolution
of the density of states of an optical heterowire versus its index modulation ;n = n1 − n2.
The background index of refraction nb = √

εb = 1. In this example, the second optical index
n2 is maintained constant with the same value as the background (n2 = 1). Beyond a critical

† The general definition of this response function S(r, r, ω) was given in section 2.3.
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value of ;n, we observe the gradual formation of two photonic bands of eigenmodes centred
on λ = 450 nm and λ = 600 nm. Note that, in the context of this report, we define a photonic
band as a local increase of the DOS due to the coupling between localized photon states.
Indeed, the two photonic bands of eigenmodes which show up for n1 = 2 in figure 26(b) are
not separated by a true gap which would be characterized by a vanishing LDOS. Furthermore,
since we are working with structures of finite dimensions, the heterowire cannot generate an
absolute photonic band gap independent of the incident wavevector. Nevertheless, the LDOS
describes quantitatively the continuous optical spectrum of the structure. The description is
not entangled with the features of any particular illumination mode. Independently of the
incoming wave, the LDOS can be used for operation research purposes when optimizing
the geometrical parameters l1 and l2 as well as the optical index modulation of a structure.
From this theoretical background we can introduce the concept of a subwavelength optical
waveguide (SOW). A SOW is obtained by inserting an optical heterowire inside a reference
system (two plane dielectric slabs) (see, for example, the geometry schematized in figure 27).
In order to pursue our electron–photon analogy, the reference system will be illuminated in
TIR so as to couple the optical wire with an exponential decaying wave. The insertion of the
heterowire will result in a SOW if it opens a transmission band in the photonic gap of the
reference system. In the absence of any optical wire, the electromagnetic field state is defined
by the couple of fields {E(r, ω); B(r, ω)} but also by the initial field susceptibilities S0

and Q0. The application of the numerical procedure described in section 4.2.2 allows the new
electromagnetic state {E(r, ω); B(r, ω)}, namely in the presence of the optical wires, to be
defined. Figure 27 displays two maps of the electrical energy part flowing through the device
for two typical wavelengths. Two important remarks must be made:

• For a wavelength chosen at the centre of the pseudo-gap (figure 27(c)), the energy
transfer is much weaker than near resonance (see figure 27(b)). We are in the so-called
nonresonant tunnel regime already mentioned in section 5.1. Note that, in spite of the absence
of actual tunnel resonant effects, the evanescent decay length η−1

junc through the whole junction is
significantly greater than the evanescent decay length in vacuum η−1

vac. In the exemple depicted
in figure 27 we have gained by about a factor of six.

• As expected, the efficiency of the tranfer increases drastically if the wavelength
corresponds to the centre of the photonic band of figure 26(a). This increasing energy flow
is accompanied by a change of direction of the incident wavevector when the optical wire is
excited near resonance. In this case, we can observe the perfect commensurability existing
between the variations of field intensity along the longitudinal axis of the three SOWs and
the modulation of the index of refraction. In particular, the electric field pattern displays
complex features, with peaks along the lateral faces of the cells of higher index of refraction.
In both maps, complex fringe patterns show up. They are generated by interference between
the incident surface evanescent wave and the wave scattered by the SOW.

6. Energy dissipation inside the near-field

6.1. Mean near-fields and particle transfer

Behind the average properties of each near-field (usually detected by a local probe technique),
it is important to emphasize that the associated particles are randomly exchanged, one by
one, through the near-field zone between the probe tip and the surface of the material. In a
permanent regime of exchange, the local probe–surface system can be viewed as a source–
detector-like experiment. In this experiment, the particles are prepared in a peculiar quantum
state superposition (Joachim 1987, Nakamura et al 1999) and transferred through the near-field



932 C Girard et al

(a)

L

(b) (c)

Figure 27. Evolution of the electric field intensity map versus the incident wavelength. Two
different values have been investigated: (b) λ = 640 nm (resonant optical tunnel effect),
(c) λ = 475 nm (off-resonance optical tunnel effect).

zone. For tunnelling electrons, the random character of the preparation is nicely observed by
recording the power of the noise spectrum associated with the tunnelling current (Birk et al
1995). This Schottky noise is similar to the one recorded with a vacuum tunnel diode (Schottky
1918). It goes to zero when the transmission coefficient between the surface and the probe
reaches unity (Reznikov et al 1995). When dealing with electron exchange, another important
feature of this source–detector experiment is the Coulomb blockade effect. In a general way,
even if the random exchange phenomenon between the electrodes persists, the driven electron
transfer process through the near-field zone is blocked if the impedance of the source does not
fit that of the junction (Holst et al 1994).

In NFO, the transfer process involves individual photonic particles as well. However, when
working with traditional light sources (laser) this pure quantum aspect is masked by the fact
that the observable electromagnetic field is an average on many photon states (Glauber 1963).
Nevertheless, new single photon sources could stimulate new experiments in which photons
would dwell, one by one, inside the junction during the data acquisition process (Brunel et al
1999).

In van der Waals force microscopy, the discrete exchange of virtual photons cannot
be directly observed (Hartmann 1990, 1991, Girard and Bouju 1991). Although their role
could be very important in determining the noise level in the van der Waals dispersion force
measurements (Dransfeld and Xu 1988, Loomis and Maris 1994), the virtual nature of the
particles exchanged precludes a direct measure in the very near-field zone.
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6.2. Elementary inelastic processes in the near-field

The introduction of some material in the near-field zone between the source and the detector
leads to new phenomena. As already discussed in section 5, a first important phenomenon
is the extension of the near-field from one electrode to the other by a proper choice of the
structure introduced in the junction. Another effect results from the interaction between the
transferred particles and the material located inside the near-field zone. For example, tunnelling
electrons can be coupled to some vibrational modes of the material confined inside the tunnel
barrier. This gives the opportunity to perform inelastic electron tunnelling spectroscopy (IETS)
(Hansma 1982). In such experiments, the insulator embedded in the planar junction contains
specific molecules. The transferred electrons are inelastically coupled to the vibration levels of
these molecules (Hansma 1982). Different coupling mechanisms have been invoked: (i) dipole
coupling for which the transferred electrons interact with the molecular oscillating dipoles at
long range, (ii) direct momentum transfer on the molecule from the exchanged electrons and
(iii) occupation of the molecule frontier orbitals by the transferred electrons or holes. The
efficiency of these couplings increases with the dwell time in the junction.

In a local probe–surface experiment, the near-field zone is explored very locally.
Consequently, the particles are constrained to be exchanged through a very small area of the
junction. In IETS experiments, this means that the vibrational spectrum of a single molecule
can be recorded. This must be compared with a planar IETS configuration where the most of
electrons are transferred spatially far away from the molecules. In a local probe experiment,
a large IETS signal was predicted (Persson and Baratoff 1987). Nevertheless, we had to
wait several years for the first actual experimental evidence of this effect. Such observations
were reported very recently (Stipe et al 1998) with C2H2 and C2D2 molecules and with CO
molecules (Lauhon and Ho 1999). In these experiments, the trick consisted of including an
x–y tracking system to stabilize the STM tip over the molecule during the acquisition of the
signal.

The practice of such local inelastic spectroscopies opens the way to a more active use of
the transferred particles through the near-field zone. A good illustration of this phenomenon
was provided by the STM study of the Xe–Ni(110) system (Eigler et al 1991a). It was shown
that a single Xe atom could be transferred from the surface towards the tip apex by using
mainly the inelastic interaction of the tunnelling electrons with the vibronic modes of the Xe
trapped in its van der Waals well on the surface. It is clear here that the inelastic process does
not result from some attachment of an electron to the unoccupied 6s orbital. This 6s orbital is
5 eV away from the Fermi level and the bias voltage used in this experiment is much smaller
than 1 V (Eigler et al 1991a). An equivalent experiment was performed by Ho’s group on
the C2H2 molecule (Stipe et al 1998). In this case, inelastic tunnelling induced rotations were
obtained by applying short pusle voltage to increase the tunnelling current intensity through a
single C2H2 molecule adsorbed on Cu(100). Once again, the attachment of an electron on the
LUMO of C2H2 turns out to be highly improbable due to the energy of the electrons involved
in this experiment.

These two experiments have clearly demonstrated that the exchanged particles can be
very active during the transfer process to excite rotational or vibrational modes of the
material. However, such experiments cannot be interpreted as a high-resolution electron energy
loss spectrocopy (HREELS) experiment (Eigler et al 1991a). In a HREELS experiment,
the electrons are prepared in a ballistic state from a standard electron source. Therefore,
the attachment process of an electron on the adsorbate can be monitored by selecting the
electron incident energy. Note that similar experiments can also be performed with a local
probe technique by keeping the tip apex far away from the near-field zone (e.g., in a STM
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configuration, the STM tip can be transformed in a low-voltage field emission source (Watanabe
et al 1996)). In this precise case, electrons can also be used to break a bond (Watanabe et al
1996) or a molecule (Dujardin et al 1992). However in a pure tunnelling regime the physics
is completely different since the exchange of electrons does not follow a ballistic regime.
More precisely, the intepretation of bond-breaking experiments pose the difficult problem of
understanding the inelastic interactions between an incident particle devoid of real wavevector
and the degrees of freedom (rotational, vibrational and electronic) of the molecules or any
other nanostructures located in the near-field zone. Up to now, this question has not received
a convincing answer and, in the context of electron tunnelling, the problem of dissipation still
remains to be debated.

To close this section, let us call that this difficulty is partially removed in the usual context
of the photon tunnelling microscopy. In this case, the fact of working with classical illumination
sources drastically reduces the importance of this problem (Girard 1992). Although in the
near-field zone the evanescent electromagnetic field displays important imaginary wavevector
components, it may be considered as a classical quantity that will enter the coupling
Hamiltonian with the status of a parameter. Consequently, in NFO a realistic prediction
of the dissipation effects reduces to a proper description of the imaginary parts of either the
dielectric constants of nanostructures or the molecular polarizabilities.

7. Conclusion and perspectives

In this review, we have tempted to unify the concept of the near-field in describing the average
properties of different types of real (or virtual) particles in the presence of an interface. In a
general way, the different categories of near-fields can be detected by approaching a second
material very close to the sample. By reducing the lateral barrier it then becomes possible to
extract local information generally out of reach by conventional methods. This is the basic
principle of all near-field microscopies and spectroscopies.

We have explored several fundamental issues. In particular, from the understanding of
the near-field concepts, we have shown how it is possible to study a new class of transport
phenomena: the so-called tunnelling transport regime. Elongated systems for which the
localization length is usually small (molecular wires, optical heterowires), can transfer particles
(electrons or photons) from this mechanism.

Finally, we have shown how this localization length can be partially controlled by an
appropriate structuring of the material playing the role of a near-field guide between the two
interfaces. As in the other transport regimes, this opens interesting questions about the inelastic
phenomena occurring in such tunnel channels. As detailed in the last section of this review,
this also reopens some questions about the status of a tunnelling particle inside the near-field
zone.
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Dereux A 1991 Théorie de l’optique de champ proche PhD Thesis Facultés Universitaires Notre–Dame de la Paix,

Namur, Belgium
Dereux A and Pohl D 1993 The 90 degree prism edge as a model SNOM probe: near-field, photon tunnelling, and

far-field properties Near-Field Optics (NATO ASI vol E 242) ed D Pohl and D Courjon (Dordrecht: Kluwer)
pp 189–98

Dereux A, Vigneron J P, Lambin P and Lucas A A 1991 Physica B 175 65–7
Dereux A, Weeber J, Bourillot E, Goudonnet J P and Girard C 1998 Ann. Phys., Paris C1 23 27–34
Descouts P and Siegenthaler H (eds) 1992 10 Years of STM Ultramicroscopy 42–44 1–1670
Dransfeld K and Xu J 1988 J. Microsc. 152 35–42
Dujardin G, Walkup R W and Avouris P 1992 Science 255 1232–4
Duke C B 1969 Tunnelling in Solids (New York: Academic)
Dürig U, Pohl D W and Rohner F 1986 J. Appl. Phys. 59 3318–27
Economou E 1983 Green Functions in Quantum Physics 2nd edn (Springer Series in Solid-State Science vol 7) (Berlin:

Springer)
Economou E N and Ngai K L 1974 Adv. Chem. Phys. 27 265–353
Eigler D M, Lutz C P and Rudge W E 1991a Nature 352 600–3
Eigler D M and Schweizer E K 1990 Nature 344 524–6
Eigler D M, Weiss P S, Schweizer E K and Lang N D 1991b Phys. Rev. Lett. 66 1189–91
Esaki L 1957 Phys. Rev. 109 603–10
——1974 Rev. Mod. Phys. 46 237–44
Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61–71
Esslinger T, Weidemüller M, Hemmerich A and Hänsch T W 1993 Opt. Lett. 18 450–2
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