Dimensional analysis
» Scaling - a powerful idea
 Similitude

* Buckingham Pi theorem

» Examples of the power of dimensional analysis

Useful dimensionless quantities and their interpratati
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Scaling and similitude

» Scalingis a notion from physics and engineering that shaeadly be
second nature to you as you solve problems:

» How does dependent quantjtgcale with variations of independent
guantityx?

» Smilitude is more of an engineering idea: suppose we scaled
parametex by a factorC. If we wanted to maintain the same value of
guantityy, how would we need to rescale the other independent
parameters?

» Put another way: if we measureiamariant quantitylike the speed
of light, we get 3 x 1®m/s. We know thatf we want to change our
length and time unitso that the speed of light is “1” in our new units,
we have to rescale both space and time

» The invariance of actual physics and the requiremfeatconsistent
system of units is information at our disposal thauseally don’t think
about consciouslyOften we can use this information to solve some
pretty amazing problems without resorting to gory compartat



Buckingham Pitheorem: statement g, qngham phys. red. 345 1014,

If a physical problem involvesvariablesy, ... v, that depend on
independent dimensional units, then the solution of thdgmoban
always be written in the form:

0=f(M,M,,...M.)

where thdl, are (- r) dimensionless variables of the form
— M1y H Hi
I_I K = Vl k1V2k3 .o _Vnk

and they, are rational numbers chosen to make the product
dimensionless.

Units

We have to pickn fundamental unit§; - examples of these are
length L, time T, and mass M.

We can write one of our variablegas: Vv; = po;[V;]
Then write  [v,]= I_J F> Example: §] = LT
Note that the fundamental units have to be indep@nd
I_JFiXi =1- X% =X,=--=X%,=0.

Can define a dimension matrix for our problem:

&, - Ay )
A=| @ . Tells us how all the variables

depend on the fundamental units.

ml mn



Dimensionless quantities
What are the dimensionless combinations of our bks®
[I_I k] - [V{lklvélk:% .. _Vélkn J - 1

This is equivalent to writing

m

Z Qg T Ay Tt Ay, =0
i
- A, =0

That is, thenull space of the dimension matriR is spanned by a
basis ofn-mvectorsy,, each of which corresponds to an
independent dimensionless product of our original variables

Buckingham Pi theorem

Suppose we can write a physical relation ggyv,,---,v,) =0

By the restrictions that:

(a) This should be true independent of any unitesy we use,
provided the fundamental units make sense, and

(b) The units ofp have to be some combination of the units ofthe

we can show that it has to be possible to writepthsical relation
as: o=f(Mm,NM,,..,N,.)

I'll provide a link to a rigorous proof on the ceerwebsite.

Note that the above means we can also writd; = g(M,,....,1,_,)

That is, we can always write one dimensionlessuymiods a function
of the other dimensionless products.



Example of the Pi theorem in action: a simple pendulu

Consider a pendulum of massat the end of a rope of lendthand
worry about describing the displacement of the pend@lasma
function of its initial position@,.

What are our variables to work with? 6, 8, m, 1, g, t.

That's 6 variables.

How many dimensions do we need to worry about?

[6] dimensionless
[6,] dimensionless
[m] mass

[ length

[d] length/time

> three dimensions.

[t] time

Simple pendulum
So, we should be able to find 3 independent dimensionleaspters.
* Note thatmis the only variable to contain the mass unit. €fee it

cannot be part of any dimensionless parameters - there'sayaov
“cancel” out the mass dependence.

Common sense and inspection suggest the following dimerssonle
parameters:

e

1

2 =6,
g

3 th
We know we can writed = f(@o,gtzj wheref is dimensionless.

= J —
1



Simple pendulum

6= f(eo,?tzj

If we know that the motion is periodic, we can write

£(6,0)- f[eo,?sz:o

We can solve this equation in principle @rthe period, and find,
in terms of another dimensionless functiB(®,):

P = w(eo)ﬁ

So, knowing only the units involved and the fact thatjoémm
motion is periodic, we've found:

» The period is independent of pendulum mass, and scales as t
square root ofy/l.

» The period in general depends on initial position.

Caveats:

* In exactly the same way that a basis set of vecsansti unique
(a new basis may be formed by an appropriate lineabictation
of an old basis), our choice of dimensionless paraseterot
unique!

» The dimensionless parameters must be independent.

« Start with your initial variable list. If you try tase too few of
them, you'll find that you can’t make the right number of
dimensionless parameters.

» Can go through and find dimensionless quantities by boute.f
but intuition and inspection are generally used.



Fluid flow in a pipe

Suppose what we want to know is the pressure drop along
length of pipe with fluid flowing through it.

Relevant variables:

ML-2T-2 oP average pressure gradient
L D pipe diameter
L e average size of pipe wall roughness
ML -3 P density of flowing fluid
ML 1T M viscosity of flowing fluid
LT \Y velocity of flowing fluid

Fluid flow in a pipe

Six variables, three units implies three independent
dimensionless products describe this phenomenon.

Again, an infinite number of ways to choose dimensionless
parameters, but we go with:

D
LL Reynolds number
_e .
E= ) relative roughness
DOP
o (no name)

. . . . DOP _
Using the Pi theorem, we can write this aﬁpvz = f(Re,g)
. . . 2V
or, playing with numerical factors[1P = o f(Re,e)



Moody plot

Heref is called Fanning’s friction factor.

Note that this allows the scaling of numerous experimentsaonto
single plot, and gives us important similitude information....

Stokes’ drag law

How fast does a spherical particle fall in a viscourlflas a
function of radius?

Relevant variables:

L R particle radius

ML-3 5 particle density

LT2 g gravitational acceleration
ML -3 for density of fluid

ML-1T-1 H viscosity of fluid

LT v terminal velocity of particle



Stokes’ drag law

Again, six variables, three dimensions implies three
dimensionless products.

2 VR
nlzﬁ m,=— r|3:’0fI
P f Rg H
“Froude number® Reynolds number
V[ PiR Py
Rg H Py

Being clever, and knowing the physics at work, we eavrite:

. Rzpﬂgw[pp}

H P

Stokes’ drag law

R2
v pﬂg‘// &
H P

Better even than that, we know that if the two densi#tiesequal
the particle should remain motionless!

So, knowing that what we’re really doing is buoyancy, we know
that ly sh :
atg only shows up as a(p, - 1)

The only way for this to be true is if we can write:
2

v=C R°0q9 &_1

H P

whereC is just some number. For a spherical particleyritd out
from detailed calculations th&tis 2/9.

Again, with a bit of intuition and dimensional analysis, ya
quite far!



Atomic bomb blast

A very famous example: when the atomic bomb wasdest
Alamagordo, NM in 1945, a number of high speed photographes wer
taken.

After the war, these pictures appeared in a 1947 issuiéeof L
Magazine. At this time, the yield of the bomb wag sléssified.

However, based on these pictures, British (and Saséethtists
were able to come up with a very good estimate fobtimeb yield!

Let’s give this a try....

Atomic bomb blast

Assume a total amount of energylumped into an infinitesmal
volume very rapidly.

Assume a resulting spherical shockwave of radiyexpanding
into the surrounding undisturbed air of dengity

We have four parameters:

ML2/T? E bomb yield

L r shock radius
T t time

M/L3 p air density

and three units, which means there should jusinbe
dimensionless parameter(!) that remains constantglthia
process!



Atomic bomb blast
Plugging in, we can quickly find that:

Et>  should be constant during
the expansion of the
shockwave.

—— 00 METERS

Atomic bomb blast

Assuming the constant of proportionality is just 1, andgiie scale
bar so thoughtfully provided by the Army, one can calculzéethe
yield of the Trinity test was around 25 KT.

Because of the beauty of scaling, one can actually thowés, say,
dynamite to determine the actual value of that nurakdoefficient.
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Dimensionless numbers and their interpretation

We've shown that dimensional anaylsis can be very ugaful
getting information out of complicated systems without
necessarily performing a huge calculation.

An added ingredient, however, to avoid picking a really awiwa
set of dimensionless products, is intuition.

What follows are some common dimensionless numiset $heeir
interpretations....

Reynolds number:
ovd (ov?d?) inertial forces
Ko (mvld)(d?) viscous forces

Dimensionless numbers and their interpretation

Froude number

V2 _ o kinetic energy
Rg PgR  gravitational potential energy

Mach number

v speed

Cs speed of sound

Prandtl number

H / K |_ M, convective heat transfer
£, K conductive heat transfer

0



Summary

» Dimensional consistency places significant (if sylttenstraints
on the relationships between quantities described byrdiioreed
variables.

» Dimensional analysis can give us an impressive anmaunt
information when supplemented with a little physicaliiitn and
insight.

» Understanding dimensionless quantities and theiroakttips is
essential for similitude tests....

12



Fluid mechanics: an overview

Several different regimes of fluid mechanics and dynamics:

* Viscous flow vs. inviscid flow Most relevant to microfluidics:

» Steady vs. unsteady flow
e Laminar vs. turbulent flow

* Incompressible vs. compressible flow

» Open vs. confined flow

Viscous, steady, laminar,
incompressible flow.

In open flow, must worry abol
surface tension, surface

chemistry effects.

Two main ways of approaching fluids problems:

» Control volume analysis

* Eulerian approach (following fluid elements)

Viscosity

Defined by considering the stresses involved in shearing

volume of fluid:

a

_d  9a _a@/at) _ou

oy ot oy oy

For Newtonian viscosity, shear stress is linearlyprtonal

to the strain rate: ou
T, = H—

—



Viscosity

Thinking in terms of velocity fields,
u(x, y, 2) = x-velocity component
y SN

Xy

shear stress,,

Newtonian viscosity defined asir ,, = ,ug—u
y

Thekinematic viscosity is another useful quantity:V = ;
Viscosity is sometimes referred to as a diffusioefficient for
momentum.

Because a force is actually a rate of change of momertstress is a
momentumflux. In that sense the shear stress is a fluxmobmentum
in the y direction, driven by a gradient in the concentratibr o
momentum.

Newtonian vs. nonNewtonian

Newtonian fluids are those for which the viscositindependent
of strain rate.

NonNewtonian fluids are certainly possible, for which
U= 'u[aa tj =u aiu t
ot '’ ay’

» Pseudoplastic - viscosity drops with increasing shea(shesar-
thinning; e.g. mayonnaise, toothpaste)

Several types:

« Dilatant - viscosity increases with increasing shrate (shear-
thickening; e.g. corn starch in water, silly putty)

* Thixotropic - viscosity drops with time under constanteshe

* Rheopoxic - viscosity increases with time under consiasar (rare)

NonNewtonian fluids can be important for microfluidicsbliGids and
other suspensions (e.g. blood) are often pseudoplastirthpic.




Incompressible vs. compressible

Much of what we care about is flow of liquids.

Under our conditions of interest, most liquids are ficalty
incompressiblep is constant in space and time.

* Note that for gas-based microfluidic devices (micrasealbines,
refrigerators, etc.) this may not be a reasonableoajpation.

» Also note that if we assume incompressibility, we ignoring
potential physics in longitudinal sound waves.

Turbulence "

4

A
You know from experience that the details of
fluid flow can be incredibly complicated - A m AT
just look at the evolution of a puff of smoke u
in air, or a drop of cream in coffee.

The cascade of detailed fluid motion over a
broad range of length scales superposed on steady turbulent ﬂog\,
top of background average motion is called

turbulence. u

We are fortunate in two respects:

» Control volume analysis lets us treat
average behavior of steady turbulent flow
readily.

>

* In micro- and nanofluidic systems, we laminar flow  t
almost never need to worry about turbulence!




Laminar flow

Most micro- and nano-fluidic devices are in the lamiegime.
This regime is typified bjow Reynolds number.

Reynolds number:
ovd (ov?d?) inertial forces

u o (wvld)(d?) viscous forces

* Viscous forces dominagteesulting

in a smooth velocity field that can
sometimes even be solved

analytically, given correct boundary =+
conditions. .;lackay}'

* No mixing of adjacent fluid layers
(except by particle diffusion, which Keniset al., Science8s, 83 (1599)
still happens).

Control volume analysis - steady flow
Draw a fixed box around a volume of interest anusater the
conservation laws that must be obeyed:
» Total mass of fluid must be conserved.

» Total momentum must be conserved: rate of chahgeomentum
of the fluid flowing through the volume must be reag by the
forces acting on the fluid.

» Total energy must be conserved (we’'ll get to tme later).

Start off with 1d case:




Continuity

P p
u u+ du
> —
y A A+ dA
X

For an incompressible fluid,

PAU = p(A+ dA)(u + du)

. 0
I | f =
nintegral form, |g= . vadv + Lspu (A

This should be old-hat for you to convert to differahtbrm:

Of(ou)=0

0
For a compressible fluid,[J [{ ou) = —a—’to
Momentum equation
z p 0

_.u u+du

—
y A A+ dA
X

Now consider thenomentum flux in and out of the control volume.
x-momentum in left side:  A(pu)u
x-momentum out right side: (A+ dA)(,o(u + du))(u + du)

Difference has to be equal to total forces (body fase) acting
on the fluid in the volume.

In integral form, |F_+F, = %J‘w (ou)dv + J‘CS(,ou)u [dlA




Momentum equation along stream lines, no viscosity

In laminar flow, can think about stream lines - trajae®mtraced
out by, e.g., tag particles in flow.

Stream lines do not cross each other, so one mayedefiontrol
volume that follows stream lines and only have to walrgut
fluxes of matter out the ends.

Saysis coordinate along direction
of stream line.

pAU, = p(A+dA)(u, +du,)

An example of a force acting on the fluid: hydrostat&spure.

Assume for now that the pressure is uniform acrods ead.

: d
Pressure force term: F. = pA—(p+dp)(A+dA) +(p+7p)(dA)

Momentum equation along stream lines, no viscosity

Simplifying the pressure term,

F, =—-Adp- % dpdA

Body force? How about gravity:
F, =-pgsin&V = —,ogsinH(A+d—;‘)ds: -og(A+ d;‘)dz
Momentum flux will be just out the ends:
F, +F, =u (-ou A) + (U +dug)(o(ug +dug)(A+dA))
Recall, pAu, = p(A+dA)(u, +du,)

So, we're left with:

- Adp —%dpdA— pgAdz—Wz = pu Adu,



Bernoulli equation

Regrouping terms, we get _p_ gdz = u,du,
o

dp 1,)_ . .
or ) +gdz+d SUs |7 0  where these differentials are taken
along a stream line.

Dropping the subscript and integrating, we see that éadst
inviscid, incompressible flow along a streamline,

Py gdz+(1u§] = const
0 2

This is the Bernoulli equation that you've probably semnesvhere
before.

Remember, this comes from solving simultaneously th&roaty
and momentum equations for a differential control volatoag a
streamline, under quite restrictive conditions.

Control volume summary

» Define some volume of interest.

» Add up mass fluxes in and out of volume. Continuity will
provide a condition on the velocities (for incompressilow)
and flow areas to assure conservation of mass.

* Add up momentum fluxes in and out of volume. The netohte
change of momentum of the fluid going through the volume must
equal the total force on the fluid from surfaces doably” forces.

» For more complicated situations, must keep track afifiirent
components of momentum!

* For specific case of steady, incompressible, indiow along
streamlines, can use Bernoulli equation.



Eulerian analysis

Instead of a fixed volume, consider following an individilisd
particle as it passes through the velocity field assumeglist
everywhere.

That particle has to obey Newton's laws, and it caddfermed
(rotated, sheared, stretched).

So, at time have particle at positiany,z with a velocityu(x,y,zt).

An instant later, it's velocity should be given by
U(x+x,y+dy,z+dzt+ad)

Use the chain rule:
dup :ai@(+aid/+a£&+ai
ox oy 0z ot
Acceleration of the particle is then
= dUp —@§+@Q+@Q+au

a =
P dt oxdt oydt oJzdt ot

Eulerian analysis

If we call the components of the velocity fieldv, w, then

Du du, 9u Ou_ Adu_ . du
o= = +—V+—W+

- 7u PR PR PR
Podt ox dy 0z ot

This kind of derivative is calledtatal or convective or advective
derivative.

In differential form, Du _ u0Ou) + 9
Dt

u
ot '\
/ local acceleration

“Convective” or “advective” acceleration of parécl



Eulerian analysis: momentum equation

Now that we know what the actual acceleration of aqaati blob
of fluid is, we can figure out what the forces on thatipalar blob
are, and set them equal. This should give us a micrasfopi of
the momentum equation.

Consider a little volume of fluidxdydz. The forces acting on the
little blob can include a body force (gravity, in our xde), as
well as forces from stresses acting at the surfaicése blob.

Look at thex direction for example, and allow the stresses to vary
in space!

Fo =| O +1%dx dydz-| o, 100, dx |dydz
2 0x 2 0x

or or
+ [ryx + %T; ddexdz—{ryx —;a;xddexdz

|1, +1&dz dxdy—| 7,, —Eaﬁdz dxdy
2 0z 2 0z

Eulerian analysis: momentum equation

Simplifying, and writing for all 3 components of the fewe forces,

0
Fy = {aa” Ml aT”jdxdydz

0X oy 0z
= 99, +ﬂ + ﬂ dxdydz
¥ dy ox 0z

Gl
F, = 09, 9% , OTn dxdydz
0z ox oy

To go further, we need to write the stresses in tefritse
pressure and the viscosity (which you know shows up becaus
of velocity gradients).



Eulerian analysis: momentum equation

T. = =u 0V+@ _ 2 ou
v Ty ox  ay O =—P-— 3me+2/Ja—
ow | ov 2 ov
ryz=rzy=u[ay+azj Ty =p-gHIM+2uo
ou , ow 2 ow

=7 =y =+ O,=-p-—-pu0W+2u4—
TZX TXZ /’I(az axj 3 az

Recall, also, that for incompressible flow,

9
DEqu):—a—'f—.DEu:O

Navier-Stokes equations - incompressible case

Substituting, and adding in gravity, we get:

L
o7
op, v v
F, = 9y
= Ty ”[ax aj

SRR

op d°u 6
Fo=pg,—Pap i+
=D T2

J
oy*

0z Xz ay? 62

Rewriting the whole momentum equation in a coordinateviieeg
assuming constant density and viscosity:

Du 5
— = pg-0p+ u2
th P9 —0p+ 0l

This is the Navier-Stokes equation for viscous, incasgible flow.
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Laminar, viscous flow in a circular pipe

We want to find the velocity distribution for “fully-deloped”
viscous flow down a circular cross-section pipe:

Can solve this either with a
control volume analysis, or using
Navier-Stokes. First, the former.

Annular control volume, centered on
pointx. Flow velocityu(r).

190
Force on left end: [p 2 pdijnrdr

: 10p
F :=| p+=——dx|27dr
orce on right end: [p > ax j

Laminar, viscous flow in a circular pipe

Shear force on inner surface:

- Trx‘lar” dr ZH(r—Edr]dx
2 or 2

Shear force on outer surface:

(r,x + Eﬂ dr]Zn(r + 1 dr]dx
2 or 2
For fully developed flow, total force on fluid must be zero
ap r>< aTrx =}a(r Z-r><)
ox r or r or
Integrating w.r.tr:

w_1 %, ¢
rr,x=1r2@+q/0r 2u 0x r,u\
X
—,u@ / u= 9P ClInr+c
T or 4,U 0X H

11



Laminar, viscous flow in a circular pipe

Apply boundary condition that= 0 atr = R: (“ho slip”)

@]

Parabolic velocity profile.

Can compute volume flow rate for this case:

R 4
Q= [u(r)2mar = —HR(apj
° 8 u \0x
This kind of fully developed laminar flow is also callédiseuille flow

This is the flow regime most commonly encounterediiy)@losed
microfluidic channels.

Note: Could have written Navier-Stokes eqn. in cyliraréoords.,
and solved with appropriate boundary condition, gettimgesanswer.

What about an open flow?
No stress

d o u(y)

Again, ignore gravity and assume a driving presstadignt.

Also assume that the flow is much wider than it is deep.

Do same kind of control volume analysis for a rectangular
control volume, and find:
o7, _ ap

0*u _adp

_ =
ay  ox ay®  ox

What are correct boundary conditions for this case?

u(y=0)=0, 9u =0
oy

Again, could integrate and use b.c. to fir(g).

y=d

12



Boundary layer

—_— [—

0] > — :__,:
—_— —
g —>
—_—

With no pressure gradient, steady viscous incompredkille
over a plate developstaundary layer of fluid moving at reduced
velocity compared to the bulk.

The plate also experiences a shear force.

Exact solution requires solving a boundary value problem:
2
@+@=0 uau ou _ uo‘u
ox ay ox dy poy?
uy=0)=0  u(y=w)=U

Boundary layer

_— _—
_— _— 6()()

g
—
—>

Requires numerical solution. Still, casting problensarrect
nondimensional variables leads to the expressions

5x
O = = =
(%) %] whereu(y=7J) = 0.99U.

= 0.3320U2
N AUXT
These expressions hold in tlzeninar regime. Far enough downstream,

the effective Re in the denominator becomes large4300), implying
a transition to turbulence.

For wateru ~ 0.001 Pa-s; for a bulk flow speed of 1fd/s, this occurs
at a point ~ 230 m downstream = never, in microfluidi@cas

13



Stokes’ drag law

What is the drag force on a
sphere in a medium moving
with uniform flow speedJ far
from the sphere?

Again, boundary value
problem for Navier-Stokes.

Stokes introduced a stream functipndefined so that

u = 1 ail/j u :—71 671/1
" r2sing 96 rsing or

6
Can then rewrite NS equation as:

02 sindo{ 1 0
E2 E2 :O, hereE2 =t ————
(Ey)=0 w az 12 66?[sin6?66?]

Stokes’ drag law

02 sin@a( 1 0
E%(E%Y) =0, whereE? =— + — =
(E¥)=0 w PR 60[sin060j

This is a 4 order PDE, requiring four boundary conditions:
u(r=a)=0 No flow normal to sphere surface at surface.

Shear stress prop. to velocity gradient at spheface.

u, (r - o) =U coséd
Uy(r - ) =-Usingd

Final end result:

» Very useful for describing forces on small paggc{colloid,
cells, etc.) in microfluidic systems.

» Quite easy to have drag forces be substantialhxaRle!

14



Surface interactions

* Details of the interactions between fluids and s@gazan be of
crucial importance in micro- and nanofluidic environments

» Obviously, for small volumes of material, the suefég volume
ratio can become large, leading to surface forcesrgMng out
body forces.

 Surface interactions often determined by surface cktemi
energetic competition between liquid cohering tofitaet wetting
the surface.

a8

Contact angle clearly varies depending on affinity auilil for
solid surface.

What is surface tension?

 Surface tension has units of energy per area, or fckength.

» Accounts for the energetic differences per moleculesdoen
molecules in the bulk of a liquid and those at therfate between
the liquid and another material.

» Can think of it as the energy cost for creating a arga of that
interface.

» Analogous, thermodynamically, to pressure (though define
with a minus sign).
That is, in 3d: W =-pdV

For a 2d interface, W = adA

15



Basic surface tension intuition

Surface energy per unit volume for a spherical drop:
4r’c 30

@ryms* r
Clearly surfaces become very expensive at small siessc

All other things being equal, two small drops will metge
minimize the surface area.

Similarly, small bubbles are energetically very expezsand
will tend to collapse if pressure forces from thpaminside
can't balance the surface tension force.

This bubble collapse can be very intense in termseifggn
density - cavitation, sonoluminescence.

Water: 6., = 0.072 J/rA Hg: o, = 0.436 J/rA
Octaneo,,, = 0.022 J/m

Surface interactions

Contact angle determined by energetics. Consider méwing
interface slightly.

Defining solid-liquid, liquid-air, and solid-air sude tensions as
gy, 0y, anday, respectively,

o, —04 =0, C089,

sV

Surface interactions (surface tensions) can be ¢gilonemically.

Under certain circumstances, they can also be tunéukdity!

16



Wetability

o, —04 =0, C089,

sV

Spreading coefficient is defined asS= o, -0y — 7,

Large positiveSimplies that the liquid likes to spread.

“High energy” surfaces have large valuesigfand are energetically
expensive.

Surface energies between the liquid and solid come abgause of
microscopic interactions at the interface.

The extreme version of this would be covalent bondingfdouhost
liquid/solid interactions, it will be some variant\één der Waals.

Wetability
So, if the interaction potential is what determinease
affinities, we can write:
oy =04 t0, Vg

where we've defined an attractive interaction to gipesitiveVg, .

Similarly, two identical liquid regions that then touch hawe
surface energy associated with that interface:

0=0,+0, -V,
So, combining these we can see that the wetting cigftiis then
S=Vq -V,
This is also pretty much why teflon is effectivelgter-proof: the
hydrogen bonding interaction between water moleculesih

more strong than the VdW interaction between the waigttze
fluoropolymer.

17



Wetability

If we're really talking about Van der Waals, the potanietween
two different materials is related to their polaritiibs:

VLL~aE Vg ~asa,
Since the polarizability of most hard solids is laridpam those
of liquids, wetting ends up being favored.
Complications:

 Polarizabilities are frequency-dependent, so therearections
for this to the above.

» As we said, other stronger interactions can be aafefhydrogen
bonding, chemistry)

* Liquid microstructure near the surface can be quifterdnt than
in the bulk (extremely important for nanoconfined fluids)

Capillary action

The interaction between the liquid and the solid surfacebe
powerful enough to draw liquid up against gravity: this is
capillary action.

—:-| |-:— 2r
09(71°h) = 271 04 cosb, j/
lg
h= 204 cosf, &; \
o9r L

Note that for nonwetting interactions, the contatgle is greater
than 90 degrees, $ds actually negative!

This kind of capillarity is one way to measure aug tensions.

Strength of capillary action: assuming zero cardagle, water
in a 1 micron tube would get drawn up 15 m (!).

18



Can surface interactions be tuned?

Yes, in several ways, some irreversible, some not:
» Chemical modification of liquid surface - surfactants.
» Chemical modification of surface termination
» Self-assembled monolayer
» Temperature-dependent monolayer
 Optically active monolayer
 Electrochemically modified interactions
* Electrokinetic effects

» Electrostatics and solutions

Self-assembled monolayers

EANN

Photomask

Using soft lithography / ' _
microcontact printing with T I ycrophotic
E 20 t) ib ;o ib E ib ¢ Hydrophilic

NaOH o
Solution

PDMS stamps, can pattern
surfaces into hydrophilic

and hydrophobic regions. - iy ot v

o a o o o o

Also, optical patterning can
be done to modify the SAM
once it's in place. ¢ °

At right, dye in agueous // ........ ~ =
solution only goes where /
hydrophobic surface \\

termination has been b 2mm

removed.

Zhaoet al., Science91, 1023 (2001).

Hydrophobic
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Temperature-dependent layer

Coat the surface with a liquid crystal
polymer film. Below transition _
temperature, film is ordered and i view]
presents a hydrophobic sidegroup.

Above transition, film is disordered: — e
more hydrophilic interaction.

Crevoisieret al., Science285, 1246 (1999).

Optically active monolayer

UV light Blue light
In this case, SAM has p—d— vﬂv vll Jl Jl ﬂ' vﬂ' Jl J]r Jl
two isomeric forms -Q-Ep e Eb-ﬂ-
between which it may be
revg:rslilbly switched _ 100 = UY light ———— Blue light — 28 -
optically. e -

p Yy = 80_\ 26 %
UV light conformation g 60 24 2
favors wetting of the b= §
surface by oil, while E 404 228

- . 2
blue light conformation = 20- 2.0
favors dewetting. o
| T T T T T T T T T
0 40 80 120 160 200

Irradiation time (s)

Ichimuraet al., Science288, 1624 (2000).



Optically active monolayer

LV light

Because these surface ﬂ ﬂ ﬂ iL ‘u
modifications are Otive ol
* roplet
reversible, it is possible t=0s e ————
to move droplets of B
liquid around the surface ﬂ [ ‘I?;,ﬁ
purely by optical -
modification of the t=35s - e
surface energies. c
w1l
e - —
D
Same procedure with a reverse
direction shown above
| — — i~

Ichimuraet al., Science288, 1624 (2000).

Electrochemically modified interactions

Can also use electronic
modification of interfaces.

At right, a surfactant molecule
that can be switched between a
relatively low and high surface
tension state depending on its
ionization state.

Using this on an electrolyte /
electrode interface, it is possible
to modify the surface energy on-
the-fly by electrochemistry.

Current (uA)

A N/ g
{ {
) Y
N kY
[ -e {
/ - J
¢ +e
{ {
S + %,
& @
i I
B
= -
.
Q 005 [V 0.15 02 0.25

Potential (V) vs. SCE
Gallardoet al., Science?83, 57 (1998).
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Electrostatically modified interactions

Dense alkanethiol SAMs are hydrophobic.

Furthermore, because of their close packing, applyirejeatric
field to the SAM is ineffective at moving the SAMoand if the
monolayer is dense and well ordered.

Other SAMs can be designed, however:

Precursor MHA

Hydrophabic
Alkyl Chain

4y Hdreshilie
Caroxylate

7 .&\\\\ Sullur
@ Gold Electrode

Precursor e Hydrophilic Hydrophabic
Monalayer Hydralysis Manolayer Monolayer

Lahannet al., Science299, 371 (2003).

Electrostatically modified interactions

Under the right circumstances, similar to those digtiss your
problem set, it is possible to use basic electrostédicnanipulate
wetting. Assume a conductive drop.

The idea is to use electrostatic forces to alteb#t@nce between
body and surface effects:

2
cos(V) = cosd(V = 0) +;K€O\ij

v

This is calledd ectrowetting.
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Solution electrostatics

Now that we’ve introduced electrically conductive liquids as a
possibility, we have to contend with the actual eletéiic
interactions between the liquid and the surroundintprizés.
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