
Continuum mechanics
Before we can discuss the detailed physics relevant in micro-
and nanoscale machines, we need to have an understanding of 
the mechanical properties of bulk solids.

Continuum mechanics is based on the familiar idea that if we 
coarse-grain the material, we can effectively understand its gross 
properties by a small number of well-defined parameters, rather 
than following each atom.

Hydrogen molecule
N ~ 4
Schroedinger eqn.
Energy levels

Short carbon nanotube
N ~ 105

Molecular dynamics
Normal modes
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Continuous solid
N ~ 1022

Elasticity theory
stresses, strains, 
normal modes



Definitions
Stresses are forces per unit area.  

• Because forces are directed and areas are also directed, 
stresses are tensorial.

• Usually deal with individual tensorial components (scalars).
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Definitions
Define u(r) to be the local displacement of a medium from an 
undeformed state.

Two points that started out a distance dr apart end up separated by 
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Intuitive idea: stresses result from nonuniform translations.

Looking at one component, 
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Stresses and strains

Can write Hooke’s law as: ⎟
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Often we want to find the strain as a function of the stress:
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Consider three specific cases:

• Uniform hydrostatic pressure

• Axial stress

• Uniform shear



Stresses and strains

Uniform pressure p ⎟
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No off-diagonal terms:  cube remains a cube.

Axial stress σzz = p, all other components zero.
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Difference between fluids and solids

Uniform shear σxy = σyx = -f

γ
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shear modulus

Fluids have no shear modulus!  They deform 
continuously under shear.



Numbers and reality

To get some sense of sizes of things:

Stainless steel:  E ~ 200 GPa, γ ~ 76 Gpa

Silicon: E ~ 156 GPa, γ ~ 65 Gpa

Silver: E ~ 75 GPa, γ ~ 27 Gpa

All these are assuming linear elasticity.  What really happens:

ε

σ
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failurebrittle
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ultimate tensile strength



Bending

Let’s see why I-beams are stiffer than rods of the same cross-
sectional area.

There is a value of y for 
which the material is in 
neither tension nor 
compression.

y compression

tension

That y position is the “neutral axis”.  Set up coordinates so that y = 0 there.

Suppose there’s some externally applied torque T that must be balanced in 
equilibrium. 

We know the total force must be zero, too - that’s what sets the position of 
the neutral axis.

Assume beam has some width w(y).



Bending
For y = 0 as the neutral axis, assuming strain linear in y, 

y compression

tension
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Since this must = 0, we find that 
the y = 0 axis must be at the 
centroid of the cross-section in the 
y-direction.

Now compute the moment (torque) for this case:
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inertia around the neutral axis!



Bending
Again, for arbitrary coordinates, neutral 
axis is such that
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I-beams are stiff in flexure because their area is concentrated far 
from their neutral axis!



Bending δθ/2
δθ

Actually computing the shape 
of the beam,
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Bending

To find the beam profile uy(z) generally, we 
must also worry about shear forces in the beam.
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Note that EI is often called the “flexural rigidity” of a beam.



Boundary conditions and beam shapes 
For the fixed end of a beam, 
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Torsion

An analogous thing happens in torsion.

The shear stress at some position x, y is 
linearly proportional to its radial position -
in a beam with a uniform twist, there is no 
shear strain on the axis.

The shear stress from that little patch of area 
contributes an amount of torque 
proportional to that stress times that radial 
distance.

Total torque supplied by twisting the beam is proportional to the 
polar areal moment of inertia:
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Torsion

Actually computing the twist of a torsion member:

φ(z) At some radius ρ, the shear strain =  
zδ

ρδφ

So the contribution to the restoring torque from a 
patch at that radius is
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Usual boundary condition for a torsion member is φ(z=0) = 0.

Note that maximum shear stress happens at the outermost radius.  For 
a circular rod of radius a,
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Torsion
So, to find the angle of twist of a circularly symmetric torsion 
member subjected to a given amount of torque T,

For a total torque and uniform cross-section,
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For noncircular members, things get complicated because of 
boundary conditions at corners, etc.  For rectangular beams, has 
been solved analytically by conformal mapping:
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Lagrangian formulation
Often we’re interested in the dynamics of a system, not just its statics.  
Can use Hamiltonian formalism to come up with equations of motion 
for u(r), the classical deformation field.

Need to be able to write down kinetic and potential energy densities.

Kinetic energy density is simple:

ru 32

2
1 dKE ∫ ⎟

⎠
⎞

⎜
⎝
⎛= &ρ

Potential energy is a little trickier.  Keeping track of the work done 
when straining a differential volume leads to a conclusion that, in a 
simple 1d case,
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Lagrangian formulation

To find equations of motion, we can write down the Lagrangian, and 
do the appropriate variational calculus.  For the 1d lateral 
displacement case, with a driving force on the free end of the beam,
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Can do the variations, remembering to play the old games that uy and 
it’s time derivative can be treated independently, and it’s possible to 
interchange the orders of differentiation.



Lagrangian formulation

Carrying this through, and setting δS = 0, we arrive at PDEs and a 
boundary condition:
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So, we now have a PDE that clearly looks like a kind of wave 
equation, and some boundary conditions, in addition to our physical 
constraints at z=0.



Normal modes

Solutions to the fourth-order wave PDE look like mixtures of trig 
and hyperbolic trig functions tailored to meet the boundary 
conditions.

General solution for the undriven case:
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This assumes an overall time dependence exp(-iΩt).

Plug this into differential equation, apply appropriate boundary 
conditions, and solve.



Cantilever case
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Cantilever case

Can’t solve this analytically.  Numerical solution leads to:
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• Discrete modes.

• Modes are higher in frequency than what you’d get considering, 
say, an open-ended pipe’s acoustical resonances, because the 
derivative boundary condition at the clamped end leads to more 
curvature (higher potential energy) than that case.



Doubly-clamped beam
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• Frequencies end up being higher than those for, say, an equivalent 
guitar string because the constraint on the derivative at the clamped ends 
requires more curvature of the beam.

• Interestingly, same resonance frequencies in the free-free case!  Why?

Roukes group, Cal Tech



What about damping?

We recall that the classical damped harmonic oscillator has a velocity-
dependent force term in the equation of motion.

Turns out for micromechanical and nanomechanical systems there are 
different possible damping mechanisms.

Two common ones:

• “Coulomb” damping:  damping force proportional to displacement.

This renormalizes the effective spring constant and mass, leading to 
slightly altered frequencies.

• Usual viscous damping:  local damping force proportional to local 
velocity.

For dissipation, we characterize system by a quality factor Q, defined in 
the usual way as 2π (total energy in oscillator)/(energy lost per cycle).



Torsional oscillators

Torsional oscillators will give you a sense of how complicated things 
can be in realistic MEMS gadgets: 

For thin torsional members, often of interest in building sensors, can 
run into complicated couplings between translational (“flopping”) 
modes and torsional modes….

Duemling thesis, VA Tech



One key observation
Notice that in both torsion and flexure, the maximum strains at a 
given z are concentrated at the locations farthest away from the 
neutral axis.

• Dissipative processes that cause damping are typically linear in 
the energy density at a given position (and so are superlinear in 
the strain).

• Therefore, surface effects can be extremely important in 
determining damping, especially in gadgets with large surface-to-
volume ratios.

Similarly, the biggest strains for the normal modes typically arise 
somewhere near the clamping constraint points for a resonator. 

• How a resonator is connected to the rest of the world can 
drastically influence its damping characteristics.



One key observation

An explicit example of this is at right.  A 
finite element calculation has been done for 
the floppy mode of this torsion paddle, 
assuming no bending of the paddle for this 
oscillator.

Color indicated the stress distribution, 
showing what regions of the structure are 
contributing the most to damping.

Clearly the clamping points are dominating.

Duemling thesis, VA Tech



Floppy mode

Taking into account mass of paddle, one finds that the lowest 
floppy mode resonance happens at a frequency like:
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Assumes rectangular 
cross-section for torsional 
members, ab.

Now to calculate the torsional 
mode itself….



Torsional mode

Restoring torque is due to the torsional members, which 
experience maximum twist close to where they join the paddle.

Torsion members must move their own moment of inertia, as 
well as that of the paddle.  Counting only the paddle for a 
moment,

Resonance frequency ends up being:
ρ
γ
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abf
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Actual constant of proportionality is a fudge factor ~ 0.3 
depending on the aspect ratio of the torsion member cross-
section, a/b.



More about damping

Other than simple viscous damping, can run into specific 
hydrodynamic effects in gases:

• Molecular regime - density of gas is so low that the individual 
collisions of gas molecules are independent.  Does not lead to 
same damping constant as a gas bulk viscosity would:
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Here p is gas pressure and m is mass of gas molecule.

• “Squeeze force” - can get different gas pressure over and 
under the paddle and torsion members by hydrodynamics.



Damping and clamping

We’ve already said that damping happens in regions of high 
stress and strain, and those often occur near clamping points.

Often one wants to have the highest Q resonator possible, and 
therefore wants to minimize concerns that extrinsic effects 
(clamping to the outside world) are a limitation.

Result:  efforts at isolation, usually in the form of coupled 
oscillators.

Cleland et al., Nature 392, 160 (1998)



Size dependence of damping
Roukes, Cal Tech

Similarly, surface effects are of 
crucial importance, because 
that’s generally where strains 
and stresses are maximized.

What is going on at surfaces, 
and what sets the fundamental 
limits on the Q that can be 
achieved in micro- and nano-
mechanical resonators?

Localized excitations, 
quantum effects, etc.



Plasticity

This whole discussion has ignored the atomistic nature of matter.  
When do we need to worry about these little details?

When we start talking about plastic deformation.

Recall our discussion from the first semester:

It is the propagation of 
dislocations that lead to 
plastic deformation.

Remember, it’s much easier to 
move dislocations than to 
break all the bonds on an 
entire crystal plane.

Kittel



Dislocations and plastic deformation

Ductile fracture:  smooth propagation of dislocations leading 
to phenomena like slip:

This leads to “necking”, 
where under tensile 
deformation the load-
bearing area begins to 
shrink.

This leads to higher 
stresses, and 
correspondingly more 
strain, until failure.



Dislocations and plastic deformation

• Dislocations carry with them associated 
elastic fields!

Ex:  an edge dislocation is an elastic dipole.

• These elastic fields mean that 
dislocations interact with each other.

• The result:  work-hardening.  More and 
more dislocations in a small volume means 
dislocations pin each other.  Eventually, 
they cannot propagate.  Result:  brittle 
fracture. 



Stress concentrations and cracks

The nanoscale structure of matter really does enter into material 
properties in a direct way that’s still an active area of research:  
crack initiation and propagation.

Even in continuum limit, deviations in geometry lead to stress 
concentrations:

Zoom in to a crack in the process of propagating.

At the nm scale, at the crack tip bonds really are being broken.  
Exactly how does this work?



An active topic of research

Recent results by AFM, for example, 
show that as cracks propagate in a glass, 
voids and other defect regions form at 
the nm scale well in front of the moving 
crack tip.

Phys. Rev. Lett. 90, 075504 (2003) 
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