Nonlinear effects

We’ve taken great advantage of linearity in developing our
treatment of EM wave propagation in media. This is not always
legitimate.

In fact, there are a number of nonlinear phenomena that are very
general, quite important in optical communications, and possibly
relevant in nanostructured photonic applications.

Here we’ll very briefly look at:
« Origins of nonlinear optical effects

« Various kinds of nonlinear effects and where they come from,
from a general 1d nonlinear oscillator picture

« Specific technologically relevant effects: solitons, optical Kerr
effect, and the electro-optic effect.

General nonlinear model and definitions

In our original definition of ¢(w) and the Kramers-Kronig relations, we
used the idea that the polarization P of a medium could only depend on
the electric field at earlier times.

However, we only took the linear approximation of the most general
kind of relationship. That is, we assumed:

P,(r) =g [ [dudrz,, (r—r,t-t)E,(r,t)
Bt
Then our definition of ¢(w) is simply related to the Fourier
transform of the linear susceptibility tensor y,,.

We could continue to include higher order terms:
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General nonlinear model and definitions

Appropriately defining with Fourier transforms:
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Clearly this gets even uglier if we go to even higher orders.

The important thing to bear in mind is which susceptibilities mix which
frequencies.

General nonlinear 1d oscillator

We can at least see where various nonlinear effects come from by
considering a nonlinear harmonic oscillator (and thinking of this as
the nonlinear polarizing part of the medium, responding to the
external EM field):

R+TX+afx+ax +bx 424 E(t)
m

The plan of attack is not too different from what you’ve seen in
perturbation theory. Assume a solution of the form:

X(®) =xO ) + X2 ) + X2 ) +....
where x("(t) is proportional to the nth power of the electric field.
We can plug this in and group like powers of field to find:
K2 1)+ TX (1) + X (1) = E(t)
m
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General nonlinear 1d oscillator

We can rewrite this in the frequency domain. We’ll do the first
and second order pieces, and then just state the results for higher
orders. Assuming the usual sort of harmonic solution for x®,
x?(w) = a E(w)- [a)g . ia)l“T1
m
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The second order term looks like:
RO ) +TXD (1) + 02x? (1) = —a(xV (1))?
x? (@) = —aF (05, @;T) [ do'x? (@)x? (0 - o)

Plugging in,
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General nonlinear 1d oscillator

We can continue this for higher orders. The interesting thing
that happens is when we consider driving terms composed of
two different frequencies:

E(t) = E, expiapt) + E, expiw,t)
Plugging this in, because of the nonlinearity mixing results,

producing polarization response at frequencies other than just the
driving frequencies o, and ,.



Resulting types of phenomena

Among the effects that result:

» Second harmonic generation

« Sum frequency generation

« Difference frequency generation
» “Optical rectification”

 Third harmonic generation

« Intensity dependent propagation
» Raman generation

* Electro-optic effect

We’ll very briefly look at a couple of these to see where theycome from,
but look in more detail at those emphasized above.

Second harmonic generation

Plugging in our two frequency driving term into our order-by-order
hierarchical solution to the nonlinear oscillator, we end up with
polarization contributions at a number of frequencies. One
example is second harmonic generation. Because of the cubic
nonlinearity (basically @), we get contributions:
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Sum and difference generation

Similarly, the third order nonlinearity (second order susceptibility)
leads to material polarization at the sum and difference
frequencies, as well as a dc component!

That is, there are terms like:
2
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Effects of 3rd order NL susceptibility
The quartic term in the potential (3rd order NL susceptibility piece)
leads to three more interesting effects.

« Third harmonic generation - there are terms in x®)(w) that depend on
driving frequencies like 3®, and 3w,.

* Intensity-dependent propagation - we explore this more on the next
slide.

» Raman generation - inelastic process that we won’t discuss in detail.



Intensity dependent propagation
Simplest to see just by plugging into the 1d model directly:

R+TX+aw)x+bx =2i E,[e +e™]
m

Suppose the nonlinearity is a small effect. Then the solution x(t)
should look a lot like the simple linear case:

KO =3l 43, 0]
Plugging this in for x and looking at the 3rd order term we get:

b (t) =gb\x0\2[x0ei“ +Xe

For small deviations from linearity, we find
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The result is an effective index that depends on intensity! n~n_+n,l

Claussius-Mossotti relation

To better see the link between this
nonlinear charge displacement and index of
refraction, we need to recall the Claussius-
Mossotti relation.

If we define an atomic polarizability o, and
we consider the relationship between local
electric field and polarization,
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Plugging into our definition of the dielectric constant, we find
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Claussius-Mossotti relation

So, using our third order nonlinear relation for the displacement,
we can find

2

a(Eyf) = ———5—
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Typical numbers for some materials for n,:

Glass fiber: 1016 cm2/W over most frequencies of interest
GaAs: 107 cm?/W at 820 nm
InSb: 10-% cm?/W at 5 microns.

Downside of these later materials: significant losses.

Self-focusing

Start with your favorite wave equation. For example, consider the
vector potential:  V2A+ w?ue,n(z)?A=0

Assume that A is in the y direction, the wave propagates in the z
direction, and that it has some shape: A ~ Ju(x, y, z) exp(-ik,z)

Normalize so that |u? is the intensity, and define k, as the
“unperturbed” wavevector magnitude, k, = @,/ &N,

Separating out longitudinal and transverse parts of the laplacian,
and applying the chain rule,

VZu-2ik, a_ —’ ye,(N° —nd)u
0z
In the 2d case,
62
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Self-focusing

Assuming our small third order nonlinearity that gives us
2
NN +n,l =n, +n,ul

we expand to first order in n,|uf?> and get
2
O - 2ik, Xy 2k M2 uPu =0
OX * oz N,
Changing variables,
n
=— =2kl -2
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we end up with an equation that may look quite familiar:

This is the nonlinear Schroedinger equation, with q playing the role of
time, and -«|u|? playing the role of the (nonlinear) potential.

Self-focusing

For positive « (that is, n, > 0), this has a general solution:
:\F expli(c? ~72)q +igx—ig]
P cosh[r(x - x,) + 2n&q]

In this solution, &, 1, ¢, and x, are arbitrary parameters. To see
what this solution means, start by assuming & and ¢ = 0.

uexp(-ik,z) = \f eXp[‘”? q) ik
cosh[r7(x - x,)]
This is a beam with an x-dependent profile with width ~ 1/ 1.

The effective wavevector is modified from the linear case to

cerfor{ 3]




Self-focusing . \F expli(£? —n?)q +i&x]
Vi COSh[I](X —Xo)+ 277§q]
The solution with nonzero & describes a pulse inclined to the z
axis.
One other interesting feature is that the integral vk /2 j'| u | dx
always equals =, independent of the beam parameters. =

Why is this situation called self-focusing? The higher the intensity
(the larger |u| is to begin with), the narrower the resulting steady
state beam profile.

Intuitively, because of the nonlinearity the index goes up where the
beam intensity is the greatest, leading to waveguiding-like
behavior.

N~ ng + n,|uf?

)

Self-focusing

That integral condition means typical self-focused beam always
contains about the same amount of power, independent of beam
parameters.

What happens if one starts off with too much power? No stable
propagating solution: “Catastrophic” focusing to a point - results in
damage in high powered laser systems.

I’ll try to guide you through a self-focusing problem on the problem
set.



Solitons

Another effect of this kind of nonlinearity is the existence of
solutions that are called solitons.

Consider a propagating mode confined to an optical fiber, with an
effective wavevector k(o) propagating in the z direction. With an
appropriate change of variables: z

" (6w oK)

The vector potential must obey:
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The solutions to this wave equation are solitons, provided there’s
anomalous dispersion:  9°k <0

dw’

Solitons

Imagine sending in an optical pulse
with some carrier frequency ,, and ) \
assume for a moment that the pulse / \

bandwidth is small compared to this
carrier.

Solution is a soliton, a pulse with a hyperbolic secant shape. The
envelope propagates at the group velocity at the carrier frequency.

Basically, the nonlinearity, which tries to compress the pulse (self-
focusing tendency), compensates for the dispersion, which tries to spread
the pulse.

Result is dispersion-free pulse propagation.



Solitons in communications

This dispersion-free propagation was recognized a long time ago
as something potentially useful for communications.

However, things get complicated when one tries to implement
this at high bandwidths, and solitons have remained largely in the
laboratory.

This may be changing, though, as nanoscale control over
materials properties + photonic band gap fibers, etc. make
possible more tuning of parameters.

Sense of sizes of things: in high bandwidth lab tests, typical
pulse durations of 1.55 micron light are ~ 10 ps. That’s about
2000 periods of oscillation.

Optical Kerr effect

Another unintuitive result of that 3rd order nonlinear susceptibility:
if the intensity results from two counter-propagating waves, each
wave sees a different effective index.

This comes from: P~ yE+ z,, \E\ZE =xE+x,EEE
E=[E, exp(k,z) +E_exp(-ik_z)le ™

—1/2
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- =0 0 -
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This actually can be a dominant source of error in optical gyroscopes.



Electro-optic effect

R+TX+afx+ax +bx - | E(t)
m

So far we’ve been worrying about the b term here.

Turns out that the a term can only realistically exist in a solid with a
broken inversion symmetry.

The a term actually leads to some very useful consequences.
Neglect b and consider the effect of a dc electric field in addition to
our usual ac drive:

R+ TX+afx+ax :r?]{EZO e +e4‘“)+Edc}

We’re interested in the effect of the dc field on the ac response, so
assume a solution (neglecting h.o.t.) of the form:

x(t):xoé(xle‘“ +XE)

Electro-optic effect

Plugging in, we get for the dc terms:

2
1 X
Zaﬁma{x&z}fnem

and for the ac terms,

xl[wj -’ —il“w+2a>g]:% E,
The end result is an effective index that depends upon the dc field.

Think about it this way: oscillations of charges around equilibrium
positions give the index of refraction. Because of the nonlinearity, the
frequency response of the oscillations can be shifted by applying a dc
field (and changing the no-drive equilibrium position of the charges).

12



Electro-optic effect

In realistic 3d materials, one can define principle axes of
symmetry, and choose coordinates in which to write down the full
tensorial dielectric response:

) U, 0
D= —— E=iD=—| 0 Un® 0
“lo o wur

A dc field modifies this tensor:
Un 0 0 | [dn on on

X

1
E=|=| 0 Un? 0 |+én o on|P
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where
rlx I’ly rlz
5ﬁ:FEdc: : : Edc
r6>< I'-Gy rSZ

Electro-optic effect
These rs are called electro-optic coefficients.

To summarize: an electro-optic coefficient relates the change in
(1/gon?) in some propagation direction to an applied dc electric
field in a different direction (!).

How big are some of these numbers?
For GaAs, ry, = Iy, = s, = 5.9 x 1022 m/V.

Assume propagation in the z direction, and an applied electric
field in the x direction. The result is a change in the index for
modes with the electric field along the y direction, and the size of
the effect is about:

A z_é ngrEdc—x

For light at 900 nm, n = 3.6, and assuming 107 \V/m, the index
changes by around 0.0013.

13



Electro-optic effect

This is about as large as these effects get. The problem is usually
that electro-optic coefficients are small, and that breakdown dc
fields for materials with large electro-optic coefficients are poor.

The industry favorite for much of these effects: LiNbO;, which
has coefficients 4-5 times larger than GaAs.

We’ll see later why having large EO effects is desirable.

Also note: systems with big EO coefficients have lots of charge
arranged in a nonsymmetric way in the unit cell. That tends to
lead to other effects that can be important (e.g. piezoelectricity,
pyroelectricity, etc.).

Again, nanoscale structuring and tuning of material properties to
enhance desired ones without introducing other problems is a
very active area of research.

Acousto-optic effect

One other effect | want to mention is the acousto-optic (AO)
effect. It’s not a nonlinearity per se, but now’s a good time to see
where it comes from.

Recall the derivation of the Clausius-Mossotti relation:

iZNJ'O‘J'
€07
1
1-—%'N
3g, ZJ: %
Those Ns are numbers of polarizable objects per unit volume.

Longitudinal sound waves correspond to local density
modulations of the medium.

Therefore, sound waves can periodically modulate the index of
refraction, on a length scale corresponding to the acoustic
wavelength of the medium!

We’ll do a problem on this....



Summary and next time

» Anharmonic behavior of the polarizability leads to nonlinear
behavior of optical media.

 The result can be all kinds of frequency mixing effects, as well
as couplings between intensity and propagation direction.

 Those latter effects, involving the 3rd order NL susceptibility,
give rise to things like self-focusing and solitons.

» Microscopic material properties like lack of inversion symmetry
can give rise to other profound effects.

Next time: lasers
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Compo 5 of first ruby laser

Lasers

« Brief look at essential physics
of matter and radiation

« Laser idea and rate equation
approach

 Semiclassical theory
description and results

< Some common lasing systems

Jones, Harvard

NIF, LLNL

Time-dependent perturbation theory

When we consider the interactions between radiation and matter,
we’re interested in the response of a system to a perturbing
Hamiltonian that varies harmonically with time.

Appropriate description: time-dependent perturbation theory.

Assume unperturbed system (the matter) can be represented by a
complete set of eigenstates: |y ) = £9[y°)

Also assume for now that these states are not degenerate.
We should always be able to expand the time-dependent
solution in terms of these eigenstates, with appropriate time-
dependent coefficients: W () = Za/(,)e-iEﬁ’"h‘y,g>

J

Plugging into time-dependent Schroedinger equation with
perturbation H’(t), and taking inner product with unperturbed

state, ihé, (1) = ch (t)<l//,? ‘H'(t)‘ l//;) >ei(EE-E?)r/n
j



Time-dependent perturbation theory
E}—E°

J

Defining o, =~ Hyy =(yp|H|v))

Let’s assume the system started out in unperturbed state a. We can then
solve the differential equation for a generic coefficient ¢;(7) to ask what is
the probability of finding the system in state ;j at some later time.

1 f ' i0;,T
()= E!Hﬂ, ()" dr
2

t
IH'/.” (r)e' " dr
0

P,(0)=|e, 0 = hiz

For a harmonic perturbation, H'(¢) = %(e"‘” +e ™)
we find:

i VU‘/’a |:ei(w,‘,+(u)t 1 N ei(w,‘,w)z _1:|
h i(a)ja + 0)) i(a)ju - a))

c,(1)=-

Time-dependent perturbation theory and stimulated emission

2sin? Q¢ /2

Define r(,0)= o

We find that the transition probability is

P,()=F(t0,+o), ‘L F(o ~ o), * 1 cross terms

Ja ja

\ja
At long times F acts like F(¢,Q) - m5(Q)

So, at long times only transitions that absorb or emit an
amount of energy %w are permitted.

The result: first term represents stimulated emission.
Second term: absorption.

« Actual transition rates will depend on matrix element of
perturbation between initial and final states.

« Density of final states available will also contribute to rate (as
will statistics of particles).



Interaction with radiation

Simplest type of perturbation when we’re discussing matter and
radiation is the electric dipole interaction. For this case, if our
unperturbed states are electronic eigenstates, the perturbation
term really looks like:  H'(¢) = E, - (~er)coswt

If 6 is the angle between the E field polarization and the dipole
moment, we can write the absorption rate as:

W, = @(W) cos? H\pja\z where I is intensity of radiation,
hice,
2 2
P =(v,|-erlv,) p.=p*, >, =lp,

Note that because of this last equation, the stimulated emission rate is
identical to the absorption rate, under the influence of the same
radiation. This is called detailed balance.

Spontaneous emission and Einstein A and B coefficients

Of course, there is some rate for excited atoms (for example) to
emit radiation, independent of any external field. This is
spontaneous emission.

In some cavity, if there are N, atoms in the ground state and N,
atoms in an excited state, and an energy density p(w,,) of
radiation at the appropriate frequency to cause transitions, the
rate of absorption transitions is:

N, = B, N,pl®,)

ba

2

T
From the previous slide, we can identify 5w =37 P,
where we’ve averaged over 6. ’

Emission rate is givenby: N, = 4,N, +B,N, p(w,,)
Here A4, is the Einstein coefficient for spontaneous emission.

In equilibrium the two transition rates have to be equal.



Einstein A and B coefficients

We also know what the ratio has to be between excited and ground
state populations in thermal equilibrium:

N, A+ Bp(w,,)
< —exp(ha,, | k,T)=——""a
N, plhw,, ! k,T) Bp(w,,)
We can solve this for the radiation energy density.

If we compare the resulting formula with the general Planck
spectrum for a 3d cavity in thermal equilibrium, we can find 4 in
terms of B, and quickly solve for the spontaneous emission rate:

3
@, 2

spont

Notes: 3’ he,

P

* In equilibrium, we can never get population inversion (would
require negative temperature).

« If our system is in a cavity with a restricted photon density of
states, we can actually modify the spontaneous emission rate!

Cross-sections

Many treatments of light-matter interactions speak in terms of
cross-sections.

Just to refresh your memory, o = @

That is, the total cross-section for some process that emits energy
in chunks of 7w is given by the per particle rate of energy
emission (W ho) divided by the incident intensity (energy per unit
area per unit time).



The LASER idea
“Light amplification by the stimulated emission of radiation”.

Consider radiation at frequency @ coming into a material filled with two-
level systems with energy splittings resonant with that frequency.

The radiation energy density change from absorption: © =-N,icoW

From stimulated emission: 5 = + N, oW,

stim

The net change is proportional to N,-N;, the difference between
excited and ground state populations.

The idea of the laser is to get net gain for the radiation energy
density by somehow having population inversion.

Note that coherence actually results from the boson nature of
photons! Emission tends to go into modes already populated....

Caveat: one can actually get lasing without inversion, if one cleverly
stacks the deck to suppress absorption (needs a third level).

A generic laser:

O Excited atom

FUMPING SOURCE

. Ground atam

. oceoTede ot LisER
(€] Jor Teier rein seler 18
| OOO@.O.%&: QUTPUT

4
. Stimulated photons ﬂ
Rear mirrar

H Qutput mirror
(Tatally reflecting)

(Fartially reflecting)
Random photons
Jones, Harvard
A LASER SYSTEM

» A pump source produces population inversion.

 The optical cavity makes those photons which occupy it’s modes
stick around much longer than other photons.

* Result is they have many more opportunities to cause spontaneous
emission.

« Lightis coupled out through leaky part of cavity.



Can get 2-level lasing....

Basic idea is the ammonia maser (emits in the microwave):
|
oven
-
—— | ]
focuser

Take usual thermal distribution, but somehow (nonthermodynamically)
lop off the ground state population (say, by magnetically selecting them
out).

rf cavity

Result is a beam that’s mostly excited molecules. Note that this does
not work if you want to work with a fixed population....

This is basically the way semiconductor lasers work, though....

Why do you need at least 3 levels?

Steady-state population inversion by purely optical pumping can’t
be achieved in a purely two-level system.

Can treat this mathematically (see
http://www.stanford.edu/class/ee231/LectureNotes/ for lecture 11,
for a nice treatment).

The physical picture: because absorption and stimulated emission
come from the same physics, you can never get more energy out
steady-state for the beam than you put in.



3- and 4-level systems
Basic idea for a 3-level system:

N\ fast spontaneous transition

Ey = ho,

Ey = hoy

Each of these transitions has its own stimulated (and absorption) rates
(Einstein B coefficients) and its own spontaneous rates (4 coeff.).

Can pump at one frequency continuously to maintain population
inversion between lower two levels.

Similarly, for 4-level case,
N\ fast spontaneous transition

Ey = hoy

fast spontaneous transition

Master equations

One can write down master equations that express the constraints
connecting the rates of all the various processes as these systems
interact with radiation.

We won’t go through this in excruciating detail (read Jones lecture
notes or Stanford lecture notes if you’re interested).

Look at 3-level case. If spontaneous transition rates Wy, are
rewritten as vy, and ignoring stim. emission of the lasing level,

dN, w,
7 :WP(N1*N3)7N373 73 >>Wp_)N3z}/ N,
3

Top level:

w,
N, = N,

2

lasing level: dg2 ~ Nyys— Nyy,
So, to get steady state inversion, need 7, > y,.

In practice, it’s worse than this because stim. emission lowers inversion.



Some common laser systems:

4
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Ground state

Energy levels of chromium ions in ruby

Chromium ion (Cr*3) impurities in crystalline Al,Oj - the basic
ruby laser. Effectively a 3-level laser.

Helium-Neon
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Electric spark pumps helium into long-lived states; collisional
energy transfer excites the neon atoms into laser-active levels.

Effectively a 4-level laser.



Nd-YAG
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Rare earth ions with transitions of convenient frequencies can be
doped into optically boring (i.e. transparent) hosts. Example:
neodymium ions in yttrium garnet (Y;Al;0,).

Erbium in glass
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Another technologically useful example: Er*3ions in silicate glass.
The basis for fiber amplifiers.



General point

As light at frequency of interest propagates in the gain medium, there
is a competition between absorption losses and gain.

The point where pumping is effective enough that emission just
balances absorption is called the threshold for transparency.

I strongly encourage you to at least skim the Jones lecture notes and
the Stanford notes as well, to get a better feel for the requirements to
actually get gain, and calculating thresholds and so forth.
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