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Nonlinear effects

We’ve taken great advantage of linearity in developing our 
treatment of EM wave propagation in media.  This is not always 
legitimate.

In fact there are a number of nonlinear phenomena that are veryIn fact, there are a number of nonlinear phenomena that are very 
general, quite important in optical communications, and possibly 
relevant in nanostructured photonic applications.

Here we’ll very briefly look at:

• Origins of nonlinear optical effects

• Various kinds of nonlinear effects and where they come from, 
from a general 1d nonlinear oscillator picturefrom a general 1d nonlinear oscillator picture

• Specific technologically relevant effects:  solitons, optical Kerr 
effect, and the electro-optic effect.

General nonlinear model and definitions

In our original definition of ε(ω) and the Kramers-Kronig relations, we 
used the idea that the polarization P of a medium could only depend on 
the electric field at earlier times.  

However we only took the linear approximation of the most generalHowever, we only took the linear approximation of the most general 
kind of relationship.  That is, we assumed:
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Then our definition of ε(ω) is simply related to the Fourier 
transform of the linear susceptibility tensor χαβ.

We could continue to include higher order terms:
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General nonlinear model and definitions
Appropriately defining with Fourier transforms:
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Clearly this gets even uglier if we go to even higher orders.

The important thing to bear in mind is which susceptibilities mix which 
frequencies.

General nonlinear 1d oscillator
We can at least see where various nonlinear effects come from by 
considering a nonlinear harmonic oscillator (and thinking of this as 
the nonlinear polarizing part of the medium, responding to the 
external EM field):
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The plan of attack is not too different from what you’ve seen in 
perturbation theory.  Assume a solution of the form:
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where x(n)(t) is proportional to the nth power of the electric field. 
We can plug this in and group like powers of field to find:
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General nonlinear 1d oscillator

We can rewrite this in the frequency domain.  We’ll do the first 
and second order pieces, and then just state the results for higher 
orders.  Assuming the usual sort of harmonic solution for x(1), 
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General nonlinear 1d oscillator

We can continue this for higher orders.  The interesting thing 
that happens is when we consider driving terms composed of 
two different frequencies:
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Plugging this in, because of the nonlinearity mixing results, 
producing polarization response at frequencies other than just the 
driving frequencies ω1 and ω2.
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Resulting types of phenomena

Among the effects that result:

• Second harmonic generation

• Sum frequency generation

• Difference frequency generation

• “Optical rectification”

• Third harmonic generation

• Intensity dependent propagation

• Raman generation

• Electro-optic effect

We’ll very briefly look at a couple of these to see where theycome from, 
but look in more detail at those emphasized above.

Second harmonic generation

Plugging in our two frequency driving term into our order-by-order 
hierarchical solution to the nonlinear oscillator, we end up with 
polarization contributions at a number of frequencies.  One 
example is second harmonic generation.  Because of the cubic 

li it (b i ll (2)) t t ib tinonlinearity (basically χ(2)), we get contributions:
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Sum and difference generation
Similarly, the third order nonlinearity (second order susceptibility) 
leads to material polarization at the sum and difference 
frequencies, as well as a dc component!

That is, there are terms like:,
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Effects of 3rd order NL susceptibility

The quartic term in the potential (3rd order NL susceptibility piece) 
leads to three more interesting effects.

• Third harmonic generation - there are terms in x(3)(ω) that depend on 
d i i f i lik 3 d 3driving frequencies like 3ω1 and 3ω2.

• Intensity-dependent propagation - we explore this more on the next 
slide.

• Raman generation - inelastic process that we won’t discuss in detail.
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Intensity dependent propagation
Simplest to see just by plugging into the 1d model directly:
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Suppose the nonlinearity is a small effect.  Then the solution x(t) 
h ld l k l t lik th i l lishould look a lot like the simple linear case:
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Plugging this in for x and looking at the 3rd order term we get:
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The result is an effective index that depends on intensity! Innn L 2+≈

Claussius-Mossotti relation
To better see the link between this 
nonlinear charge displacement and index of 
refraction, we need to recall the Claussius-
Mossotti relation.

If we define an atomic polarizability α, and 
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Plugging into our definition of the dielectric constant, we find
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Claussius-Mossotti relation

So, using our third order nonlinear relation for the displacement, 
we can find
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Typical numbers for some materials for n2:

Glass fiber:  10-16 cm2/W over most frequencies of interest
GaAs:  10-7 cm2/W at 820 nm
InSb: 10-3 cm2/W at 5 micronsInSb:  10 3 cm /W at 5 microns.

Downside of these later materials: significant losses.

Self-focusing 
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Start with your favorite wave equation.  For example, consider the 
vector potential:

Assume that A is in the y direction, the wave propagates in the z
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direction, and that it has some shape:

Normalize so that |u|2 is the intensity, and define k0 as the 
“unperturbed” wavevector magnitude,

Separating out longitudinal and transverse parts of the laplacian, 
and applying the chain rule,
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Self-focusing

Assuming our small third order nonlinearity that gives us
2
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we expand to first order in n2|u|2 and getp 2| | g
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we end up with an equation that may look quite familiar:
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This is the nonlinear Schroedinger equation, with q playing the role of 
time, and -κ|u|2 playing the role of the (nonlinear) potential.

Self-focusing
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For positive κ (that is, n2 > 0), this has a general solution:
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In this solution, ξ, η, φ, and x0 are arbitrary parameters.  To see 
what this solution means, start by assuming ξ and φ = 0.
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This is a beam with an x-dependent profile with width ~ 1 / ηThis is a beam with an x-dependent profile with width ~ 1 / η.

The effective wavevector is modified from the linear case to
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Self-focusing

The solution with nonzero ξ describes a pulse inclined to the z
axis.

One other interesting feature is that the integral ∫
∞

dxuk ||2/
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One other interesting feature is that the integral ∫
∞−

dxuk ||2/
always equals π, independent of the beam parameters.

Why is this situation called self-focusing?  The higher the intensity 
(the larger |u| is to begin with), the narrower the resulting steady 
state beam profile.

Intuitively, because of the nonlinearity the index goes up where the 
b i t it i th t t l di t idi likbeam intensity is the greatest, leading to waveguiding-like 
behavior.

n ~ n0

n ~ n0 + n2|u|2

Self-focusing

That integral condition means typical self-focused beam always 
contains about the same amount of power, independent of beam 
parameters.

What happens if one starts off with too much power? No stableWhat happens if one starts off with too much power?  No stable 
propagating solution: “Catastrophic” focusing to a point - results in 
damage in high powered laser systems.

I’ll try to guide you through a self-focusing problem on the problem 
set.
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Solitons

Another effect of this kind of nonlinearity is the existence of 
solutions that are called solitons.

Consider a propagating mode confined to an optical fiber, with an 
ff ti t k( ) ti i th di ti Witheffective wavevector k(ω) propagating in the z direction.  With an 

appropriate change of variables:
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The solutions to this wave equation are solitons, provided there’s 
anomalous dispersion: 02
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Solitons
|A|

Imagine sending in an optical pulse 
with some carrier frequency ω0, and 
assume for a moment that the pulse 
bandwidth is small compared to this zp
carrier. 

Solution is a soliton, a pulse with a hyperbolic secant shape.  The 
envelope propagates at the group velocity at the carrier frequency.

Basically, the nonlinearity, which tries to compress the pulse (self-
focusing tendency), compensates for the dispersion, which tries to spread 
the pulse.p

Result is dispersion-free pulse propagation. 
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Solitons in communications

This dispersion-free propagation was recognized a long time ago 
as something potentially useful for communications. 

However, things get complicated when one tries to implement 
this at high bandwidths, and solitons have remained largely in the 
laboratory.

This may be changing, though, as nanoscale control over 
materials properties + photonic band gap fibers, etc. make 
possible more tuning of parameters.

Sense of sizes of things:  in high bandwidth lab tests, typical 
pulse durations of 1.55 micron light are ~ 10 ps.  That’s about 
2000 periods of oscillation2000 periods of oscillation.

Optical Kerr effect

Another unintuitive result of that 3rd order nonlinear susceptibility:  
if the intensity results from two counter-propagating waves, each 
wave sees a different effective index.

Thi f EEEEEEEP *2This comes from: EEEEEEEP *2
nllnll χχχχ +=+≈

[ ] tiezikzik ω−
−−++ −+= )exp()exp( EEE

2/1

2/1

0

22
2
00

2

⎤⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
+= −+

+ ε
χ

EE
nlnkk

22

2
2

2
20 2 −++ ++= EE nnnn

2/1

0

22
2
00

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
+= +−

− ε
χ

EE
nlnkk

2
2

2
20 2 +−− ++= EE nnnn

This actually can be a dominant source of error in optical gyroscopes.
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Electro-optic effect
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So far we’ve been worrying about the b term here.

T t th t th t l li ti ll i t i lid ithTurns out that the a term can only realistically exist in a solid with a 
broken inversion symmetry. 

The a term actually leads to some very useful consequences.  
Neglect b and consider the effect of a dc electric field in addition to 
our usual ac drive:
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We’re interested in the effect of the dc field on the ac response, so 
assume a solution (neglecting h.o.t.) of the form:
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Electro-optic effect

Plugging in, we get for the dc terms:
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and for the ac terms,
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The end result is an effective index that depends upon the dc field.

Think about it this way:  oscillations of charges around equilibrium 
positions give the index of refraction.  Because of the nonlinearity, the 
frequency response of the oscillations can be shifted by applying a dc 
field (and changing the no-drive equilibrium position of the charges). 
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Electro-optic effect 

In realistic 3d materials, one can define principle axes of 
symmetry, and choose coordinates in which to write down the full 
tensorial dielectric response:
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Electro-optic effect
These rs are called electro-optic coefficients.

To summarize:  an electro-optic coefficient relates the change in 
(1/ε0n2) in some propagation direction to an applied dc electric 
field in a different direction (!).

How big are some of these numbers?

For GaAs, r4x = r5y = r6z = 5.9 x 10-12 m/V.

Assume propagation in the z direction, and an applied electric 
field in the x direction.  The result is a change in the index for 
modes with the electric field along the y direction, and the size of 
the effect is about:the effect is about:

xdcrEnn −−≈ 3

2
1δ

For light at 900 nm, n = 3.6, and assuming 107 V/m, the index 
changes by around 0.0013.
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Electro-optic effect

This is about as large as these effects get.  The problem is usually 
that electro-optic coefficients are small, and that breakdown dc 
fields for materials with large electro-optic coefficients are poor.

The industry favorite for much of these effects:  LiNbO3, which y 3,
has coefficients 4-5 times larger than GaAs.

We’ll see later why having large EO effects is desirable.

Also note:  systems with big EO coefficients have lots of charge 
arranged in a nonsymmetric way in the unit cell.  That tends to 
lead to other effects that can be important (e.g. piezoelectricity, 
pyroelectricity, etc.).

Again, nanoscale structuring and tuning of material properties to 
enhance desired ones without introducing other problems is a 
very active area of research.

Acousto-optic effect

One other effect I want to mention is the acousto-optic (AO) 
effect.  It’s not a nonlinearity per se, but now’s a good time to see 
where it comes from.

Recall the derivation of the Clausius-Mossotti relation:Recall the derivation of the Clausius-Mossotti relation:

Those Ns are numbers of polarizable objects per unit volume.  

Longitudinal sound waves correspond to local density 
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modulations of the medium.

Therefore, sound waves can periodically modulate the index of 
refraction, on a length scale corresponding to the acoustic 
wavelength of the medium!

We’ll do a problem on this….
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Summary and next time
• Anharmonic behavior of the polarizability leads to nonlinear 
behavior of optical media.

• The result can be all kinds of frequency mixing effects, as well 
as couplings between intensity and propagation direction.p g y p p g

• Those latter effects, involving the 3rd order NL susceptibility, 
give rise to things like self-focusing and solitons.

• Microscopic material properties like lack of inversion symmetry 
can give rise to other profound effects.

Next time:  lasers
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Lasers
• Brief look at essential physics 
of matter and radiation

• Laser idea and rate equation 
approach

• Semiclassical theory 
description and results

• Some common lasing systems
Jones, Harvard

NIF, LLNL

JPL

Time-dependent perturbation theory 

When we consider the interactions between radiation and matter, 
we’re interested in the response of a system to a perturbing 
Hamiltonian that varies harmonically with time.  

Appropriate description:  time-dependent perturbation theory.

Assume unperturbed system (the matter) can be represented by a 
complete set of eigenstates: 000

0 jjj EH ψψ =

Also assume for now that these states are not degenerate.
We should always be able to expand the time-dependent 
solution in terms of these eigenstates, with appropriate time-
dependent coefficients: ∑ −=Ψ j
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Plugging into time-dependent Schroedinger equation with 
perturbation H’(t), and taking inner product with unperturbed 
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Time-dependent perturbation theory

Defining 00'
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Let’s assume the system started out in unperturbed state a.  We can then 
solve the differential equation for a generic coefficient cj(t) to ask what is 
the probability of finding the system in state j at some later timethe probability of finding the system in state j at some later time.
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Time-dependent perturbation theory and stimulated emission

Define
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We find that the transition probability is

At long times F acts like )(),( Ω→Ω δπttF

So, at long times only transitions that absorb or emit an 
amount of energy ħω are permitted.

The result:  first term represents stimulated emission.

Second term:  absorption.

• Actual transition rates will depend on matrix element of 
perturbation between initial and final states.

• Density of final states available will also contribute to rate (as 
will statistics of particles).
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Interaction with radiation
Simplest type of perturbation when we’re discussing matter and 
radiation is the electric dipole interaction.  For this case, if our 
unperturbed states are electronic eigenstates, the perturbation 
term really looks like: tetH ωcos)()(' 0 rE −⋅=

If θ is the angle between the E field polarization and the dipole 
moment, we can write the absorption rate as:

ajja e ψψ rp −≡ 22
* ajjaajja pppp =→=

22

0
2 cos)(

jaabs c
IW pθ
ε
ωπ

h
= where I is intensity of radiation,

Note that because of this last equation, the stimulated emission rate is 
identical to the absorption rate, under the influence of the same 
radiation.  This is called detailed balance.

Spontaneous emission and Einstein A and B coefficients

Of course, there is some rate for excited atoms (for example) to 
emit radiation, independent of any external field.  This is 
spontaneous emission.  

In some cavity, if there are Na atoms in the ground state and Nb
atoms in an excited state, and an energy density ρ(ωab) of 
radiation at the appropriate frequency to cause transitions, the 
rate of absorption transitions is:

)( abababa NBN ωρ=&

From the previous slide, we can identify 
2

0
23 babaB p
ε

π
h

=

where we’ve averaged over θ.

E i i t i i b &Emission rate is given by: )( abbabbabab NBNAN ωρ+=

Here Aab is the Einstein coefficient for spontaneous emission.

In equilibrium the two transition rates have to be equal.
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Einstein A and B coefficients

We also know what the ratio has to be between excited and ground 
state populations in thermal equilibrium:

)(
)()/exp(

ab

ab
Bab

b

a

B
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N

ωρ
ωρω +

== h

We can solve this for the radiation energy density.

If we compare the resulting formula with the general Planck 
spectrum for a 3d cavity in thermal equilibrium, we can find A in 
terms of B, and quickly solve for the spontaneous emission rate:

2

0
3

3

3 ab
ab

spont c
W p

επ
ω
h

=
Notes:

• In equilibrium, we can never get population inversion (would 
require negative temperature).

• If our system is in a cavity with a restricted photon density of 
states, we can actually modify the spontaneous emission rate!

Cross-sections

Many treatments of light-matter interactions speak in terms of 
cross-sections.  

Just to refresh your memory,
I

W ωσ h
≡

That is, the total cross-section for some process that emits energy 
in chunks of ħω is given by the per particle rate of energy 
emission (W ħω) divided by the incident intensity (energy per unit 
area per unit time).
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The LASER idea
“Light amplification by the stimulated emission of radiation”.

Consider radiation at frequency ω coming into a material filled with two-
level systems with energy splittings resonant with that frequency.

The radiation energy density change from absorption: bWN ωρ h& 1−=The radiation energy density change from absorption:

From stimulated emission:

absWN ωρ h1

stimWN ωρ h& 2+=

The net change is proportional to N2-N1, the difference between 
excited and ground state populations.

The idea of the laser is to get net gain for the radiation energy 
density by somehow having population inversion.y y g p p

Note that coherence actually results from the boson nature of 
photons!  Emission tends to go into modes already populated….

Caveat:  one can actually get lasing without inversion, if one cleverly 
stacks the deck to suppress absorption (needs a third level).

A generic laser:

Jones, Harvard

• A pump source produces population inversion.

• The optical cavity makes those photons which occupy it’s modes 
stick around much longer than other photons.

• Result is they have many more opportunities to cause spontaneous 
emission.

• Light is coupled out through leaky part of cavity.
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Can get 2-level lasing….

Basic idea is the ammonia maser (emits in the microwave):

oven

rf cavityfocuser
Take usual thermal distribution, but somehow (nonthermodynamically) 
lop off the ground state population (say, by magnetically selecting them 
out).

Result is a beam that’s mostly excited molecules.  Note that this does 
not work if you want to work with a fixed population….

This is basically the way semiconductor lasers work, though….

Why do you need at least 3 levels?
Steady-state population inversion by purely optical pumping can’t 
be achieved in a purely two-level system.

Can treat this mathematically (see 
http://www.stanford.edu/class/ee231/LectureNotes/ for lecture 11, 
for a nice treatment).

The physical picture:  because absorption and stimulated emission 
come from the same physics, you can never get more energy out 
steady-state for the beam than you put in.
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3- and 4-level systems
Basic idea for a 3-level system:

E31 = ħωp

E21 = ħωL

fast spontaneous transition

Each of these transitions has its own stimulated (and absorption) rates 
(Einstein B coefficients) and its own spontaneous rates (A coeff.).

Can pump at one frequency continuously to maintain population 
inversion between lower two levels.

Si il l f 4 l lSimilarly, for 4-level case, 

E21 = ħωL

fast spontaneous transition

fast spontaneous transition

Master equations
One can write down master equations that express the constraints 
connecting the rates of all the various processes as these systems 
interact with radiation.

We won’t go through this in excruciating detail (read Jones lecture 
t St f d l t t if ’ i t t d)notes or Stanford lecture notes if you’re interested).

Look at 3-level case.  If spontaneous transition rates Wspont are 
rewritten as γ, and ignoring stim. emission of the lasing level,

Top level: 3331
3 )( γNNNW

dt
dN

p −−=

lasing level:

1
3

33 N
W

NW p
p γ

γ ≈→>>

2233
2 γγ NN

dN
−≈ 12 N

W
N p≈g 2233 γγ

dt 1
2

2 NN
γ

So, to get steady state inversion, need Wp > γ2.

In practice, it’s worse than this because stim. emission lowers inversion.
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Some common laser systems:

Chromium ion (Cr+3) impurities in crystalline Al2O3 - the basic 
ruby laser.  Effectively a 3-level laser.y y

Helium-Neon

Electric spark pumps helium into long-lived states; collisional 
energy transfer excites the neon atoms into laser-active levels.

Effectively a 4-level laser.
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Nd-YAG

Rare earth ions with transitions of convenient frequencies can be 
doped into optically boring (i.e. transparent) hosts.  Example:  
neodymium ions in yttrium garnet (Y3Al5O12).

Erbium in glass

Another technologically useful example:  Er+3 ions in silicate glass.  
The basis for fiber amplifiers.
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General point

As light at frequency of interest propagates in the gain medium, there 
is a competition between absorption losses and gain.

The point where pumping is effective enough that emission just 
balances absorption is called the threshold for transparency.p p y

I strongly encourage you to at least skim the Jones lecture notes and 
the Stanford notes as well, to get a better feel for the requirements to 
actually get gain, and calculating thresholds and so forth.


