
Charge decay in a conductor

What is the characteristic timescale for decay of a 
nonequilibrium charge distribution in a conductor?

Continuity: ρσ
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Typical numbers for copper give τc ~ 10-19 s (!).



EM waves and conductors

What happens to EM waves inside conductors?  Electric field 
wave equations including currents becomes:
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Plugging in our trial plane wave solution gives:
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Solve for the real and imaginary parts of k = a + ib, 
taking positive roots and assuming that all 3 components 
of k have the same ratio of real to imaginary parts,



EM waves and conductors
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If ωτc << 1, the material is a “good” conductor;

If ωτc >> 1, the material is a “poor” conductor;

The poor conductor limit is boring; small corrections to what 
we already have seen, with very slow exponential decay of 
wave with propagation (b ~ 0).



EM waves and conductors

In the good conductor limit, 
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This means the EM wave decays in the conductor on a 
length scale given by:
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This is the skin depth.  In copper at optical frequencies, 
this is something like 3 nm.

• Nanoscale conductors can be on the same scale as the skin depth, 
and so can strongly interact with an electromagnetic wave.

So, in a good conductor the real and imaginary parts of k are of 
the same size.



Waves and conductor interfaces
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Consider TE case.

Apply cont. of tang. E at x = 0;
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Can do energy flow and Poynting vector and so forth.

Note that a good conductor reflects very well….



Diffraction
We want to solve the general problem of radiation impinging on a 
screen with holes of some size and shape in it, and ask what the 
resulting intensity pattern is at some distance away:

Source 
r

Can treat this as something like a boundary value problem.

Remember Huygen’s principle?  Can apply that mathematically.

We’ll do scalar diffraction theory (no info on polarization, fields).

z = 0



Scalar diffraction theory

Do theory for generic scalar variable ψ, and assume that’s not a 
bad description for, say, the E-field amplitude of an EM wave.

Generic time-independent wave equation = Helmholtz eq.
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Want to solve for region to right of screen, with boundary conditions at 
slits and at infinity.  Solution is called the Kirchoff diffraction integral:
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Scalar diffraction theory
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Typically assume either ψ or its gradient in the normal 
direction is zero on screen and undisturbed in the holes.

General case = Fresnel diffraction.

Fraunhofer diff. assumes incident plane wave, and very large R.
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Fraunhofer limit
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For a normally incident planewave, this calculation looks like a 2d 
Fourier transform of a function that is 1 in the holes and 0 outside the 
holes.

A tilted incident wave gives the same result, but offset.

Classic example:  single slit diffraction, for rectangular slit of width 
2a and height 2b.  For normal incidence,
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Single slit diffraction

∫ ∫
− −

+−+−≈
a

a

b

b

ykxki
d

ikr

d
yxedydx

r
eik )''(

0 '')cos1(
4

)( ψθ
π

ψ r

bkak
kk yx

yx

sinsin4
=

In sensible spherical coordinates,

φθ cossin dx kk = φθ sinsin dy kk =
Diffracted intensity proportional to square of wave:

22

22

22

22

0

sinsin)cos1(

yx

yxd

kk
bkak

r
kII

π
θ+

=

Narrower the slit, the wider the 
diffraction pattern….



Circular aperture

For a circular aperture of radius a, we can rewrite the integral:
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Turns out this can be done using special functions to give:
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J1 is the first order Bessel fn of the first 
kind, and has its first zero when its 
argument = 3.832.

The result of this diffraction is an Airy 
pattern, with a central spot surrounded by 
rings.  Playing with numbers, that first zero 
hits at 
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from Indiana Univ.



Diffraction

• Scalar diffraction theory is just an approximation.  To keep 
track of polarization, boundary conditions at a conducting 
screen, etc. requires vector diffraction theory.

• Because of form of Frauenhofer integral, diffracted bright 
spots in this (far-field) limit always have a minimum size on the 
order of the wavelength of the incident light.

We will revisit diffraction shortly, to consider the Fresnel case 
and get a feel for what near-field optics is about.



Antireflection coatings
n = 1

na = 1.4

Basic idea is straightforward.

Some of incident wave reflects off 
first interface, and picks up a π
phase shift.

The transmitted light racks up 
additional phase while propagating 
through the high index medium.

Some of that light is then reflected 
off the second interface (another π
phase shift), racks up more phase, 
and (some) reenters the original 
medium.

If the optical path lengths are 
chosen correctly, (1) and (2) can be 
chosen to interfere destructively.

nb = 1.7

(1)

(2)

n=1.5 (lens)



Dielectric mirrors
n = 1

na = 1.7
nb = 1.4

(1)

(2)
The basic idea here is the same, only 
this time the interfaces are chosen to 
give constructive interference, 
enhancing reflected intensity.

We’ll do an example of this here, 
assuming normal incidence and TE 
wave.

Going from n to na, the reflection coefficient r is:
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Note that r < 0 for na > n, so there’s a π phase shift for this reflection.

Choose thickness ta to be the right thickness that light reflected from the 
a-b interface comes back to the surface with exactly a π phase shift with 
respect to the incident light:
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Dielectric mirrors

Now suppose you continued the 
stack, and wanted constructive 
interference between the reflected 
waves from each succeeding 
interface.  Assume na > nb.

na = 1.7
nb = 1.4

na = 1.7
nb = 1.4

…

Going from na to nb, the reflection 
coefficient r is:
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Since nb < na, another π phase shift at this reflection.

Choose thickness tb to be the right thickness; eventually need a π phase 
shift wrt the incident light.  If we pick
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That’s why these structures are sometimes called “quarter wave stacks”.
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Dielectric mirrors

• Each bilayer called a period.

• For normal incidence and a limited wavelength range, dielectric 
mirrors are often superior to metal mirrors – higher reflectance, 
lower loss.  Why?

• We know the reflection coefficient for each interface; we can 
therefore sum the series of reflection coefficients for a stack of m
periods, and find that the total reflection coefficient for the chosen 
wavelength is:
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Here ns and nc correspond to the substrate and “cavity” indices, 
respectively.

• Can get higher reflectivity (smaller α) by having larger index 
contrast (nb/na << 1) or more periods.



Dielectric mirrors
• Can solve for number of periods needed to reach a given reflectance:
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General interface problems:  transfer matrices
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Also called “matching matrices” and “propagation matrices”.

Recall:

Can write local (transverse) electric field at a position z as 
a sum of components propagating in the + and –z
directions:
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http://www.ece.rutgers.edu/~orfanidi/ewa/



Transfer matrices
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Can then find E(z2), H(z2) as a function of E(z1), H(z1) by 
matrix multiplication.



Transfer matrices

Boundary conditions:  matching matrices
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Remember, E and H here must be continuous across interfaces.

Expressing in terms of E+ and E-, 
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Transfer matrices
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Can write a scattering matrix
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The point is, one can continue in this vein and treat multiple 
interfaces easily by multiplying matrices.

See, for example, Ch. 4 of the online textbook on the course page.

This is actually the best way to treat problems like antireflection 
coatings.



Application:  Distributed Bragg reflectors

This type of dielectric mirror is also known as a distributed Bragg 
reflector, and one particular application is in solid state lasers:

image from UCSB



Application:  Distributed Bragg reflectors

It’s clear that by MBE growth of semiconductor layers, it’s 
possible to achieve very  large reflectances, and thus very high 
quality optical cavities.

These cavities can be used for VCSELs, and also for 
manipulations of optically active nanoparticles, cavity QED, etc.

Materials limitations are tricky:  how do you make a solid state 
DBR that works at very high frequencies?



Application:  fiber gratings

Another version of the DBR appears in fiber optic communications:  
the fiber grating:

By varying the index along the length of an optical fiber, can 
result in very high reflectance of particular wavelengths; makes 
possible several switching technologies with less pain (fewer fiber 
splices / transitions to electrical components).

Even better:  Chirped gratings to compensate for dispersion.

Different wavelengths propagate different distances before being 
reflected back.  Can make up for fiber dispersion….



Complications

We’ve talked a lot about normal incidence, largely because the 
algebra is less messy.

Things get complicated at nonnormal incidence.  As you might 
imagine, polarization effects (which come in at every interface) are 
severe in structures with dozens or hundreds of interfaces.

On the other hand, these effects can be turned to our advantage -
see the paper you’re supposed to read for problem 3.



Next time:

Photonic bandgap systems



Photonic bandgap materials

• What is a photonic bandgap?

• Why are these metamaterials important 
and such a hot topic of research?

• How are photonic bandgap systems made?

MIT photonics group NEC

Sandia



Idea of the photonic band gap

We’ve seen that by carefully choosing layer thicknesses and indices 
of refraction, it’s possible to create extremely high reflectance 
dielectric mirrors around a specific wavelength. 

This works for large numbers of periods, even if the dielectric 
contrast between layers is relatively small.

It turns out that the physics here (essentially no available 
propagating optical modes compatible with boundary conditions 
imposed by the periodic material) is exactly analogous to the 
formation of electronic band gaps in solids.

To see this in 1d, start from the wave equation:
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Idea of the photonic band gap
Rearranging,
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Remember, here κ(x) is a periodic function in space:

As a result, this equation for the electric field looks remarkably like 
the Schroedinger equation for a particle in a 1d periodic potential.

This means solutions are in the form of Bloch waves!

)()( xdx κκ =+

)()exp()( xEdidxE γ=+

Now γ takes the role of the Bloch wavevector (or crystal momentum).

Just as in the electronic structure case,

• We can label allowed EM modes by a Bloch wavevector and a band 
index.

• For values of γ that coincide with a reciprocal lattice vector of the 
periodic dielectric array, the Bragg condition is satisfied, and the EM 
wave is strongly diffracted off the medium:  no propagation.



Example in 1d
We can do a case in 1d, analogous to the Kronig-Penney model from 
the Schroedinger equation version.
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Region I:

Region II:

Region III:
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Usual boundary conditions:  E and its derivative must be continuous at 
the interfaces between the regions.



Example in 1d

As in Kronig-Penney case, can write as a matrix equation: ⎟⎟
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Example in 1d
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For this to have a solution requires that the determinant of the left hand 
side be equal to zero:
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Just like the K-P model:  solutions can only exist if the right hand side 
is between –1 and 1; if ω is chosen so that the rhs is outside this 
domain, there are no allowed solutions, and we are in the photonic 
band gap.

What happens when there are defects?

As you might imagine, defects (and surfaces) can introduce states in 
the gap.

Those states are localized (!), and correspond to local resonant modes 
or standing waves.



What are the requirements to do this in higher dimensions?
Nothing too special; we just need a spatially 
periodic array of dielectric contrast in all three 
dimensions.

Remember the electronic structure case, and the 
“spaghetti diagrams”:  the size of the photonic 
band gap depends in a nontrivial way on the 
direction of γ in reciprocal space.

One other restriction:  clearly spatial modulations 
on a scale vastly shorter than the wavelength of 
light we care about are not useful (basically our 
trial plane wave solutions for the periodic 
potential problem break down).  Optimal size 
again corresponds to typical features ~ λ/4.

Polarization is also a complication that only really 
matters in higher dimensions (nonnormal 
incidence).

Yablanovitch, JOSA B 10 283 (1993).



Typical difficulty in early experimental work

Yablanovitch, JOSA B 10 283 (1993).



Possible applications of photonic bandgap materials

• Extremely small (“microcavity”) lasers

• Superefficient semiconductor optoelectronic devices

• “Infinitely single-mode” optical fibers

• Unconventional optical waveguides and routing

• Controlled optical switching



Microcavity lasers
MIT

Usually many allowed modes in an optical cavity that is pumped, and only 
one is the lasing mode of interest.  Result:  much pumping energy is 
wasted, + other modes lead to noise in laser.

PBG solution:  controlled placement of defect in PBG material leads 
simultaneously to a single well defined mode for lasing (lower threshold) 
and a minimum size cavity.



Microcavity lasers

Altug et al., Nature Phys. 2, 484 (2006)



Superefficient optoelectronic devices

How does this work, a little more rigorously?  

Typically a laser requires an optical cavity (the photons need to 
stick around long enough to cause stimulated emission).  This 
cavity has some Q.

The material doing the radiating also has some effective Q - that is, 
there is a linewidth to the radiation.

Usual laser desired for LED

Krause et al., Prog. Quant. Elect. 23, 51 (1999).



Superefficient optoelectronic devices

How to get a better match between material and cavity properties?

Sharpen up material emission by changing the available 
density of final states for the radiation:  a cavity enhancement 
effect.
Free space density of states for photons: 32
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Can get an additional factor of three enhancement if cavity is 
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“Purcell factor”.  So, a higher Q and a smaller size for the cavity 
can greatly improve efficiency, essentially by restricting the 
available phase space for photon emission. 



Superefficient optoelectronic devices
What are the physical limits on the Purcell factor? 

How should this work?  Slot waveguides

Robinson et al., Phys Rev. Lett. 95, 143901 (2005)



Superefficient optoelectronic devices
Consider a typical GaAs/AlGaAs light emitting diode.

Quantum efficiency (# of photons produced per e-h pair) can be 
exceedingly high (~ 99%).  Photons are typically emitted 
isotropically.

However, because of high index of refraction, only those 
intersecting the wafer surface within 16 degrees of normal are able 
to be transmitted at all; the rest experience total internal reflection.

Only 3-15% of the light generated is therefore useful.  

With a correctly designed PBG LED, though, one can stack the deck 
so that the LED active region only couples to a single propagating 
mode!

Krause et al., Prog. Quant. Elect. 23, 51 (1999).



Photonic crystal fibers
Nakazawa group, Tohoku Univ.

Apply same basic idea of restricted density of states available for loss 
mechanisms to optical fibers.

Can cut down dramatically on couplings between modes, and possibly open 
up new switching technologies (ex.:  fluid in voids that can be moved to 
allow positioning of lossy segment of fiber).



Waveguides and optical routing
University of Jena, Germany

We’ve already said that an 
isolated defect in a PBG 
material can act as a resonant 
cavity.

Extended series of defects 
can be used as waveguides, 
and it’s possible (because of 
the very special properties of 
the surrounding PBG 
medium) to steer light in 
unusual ways - around sharp 
corners, for example.



Controlled optical switching

Busch, University of Toronto

Infiltrate a PBG material with a liquid crystal, which you already 
know is birefringent and tunable.

Reorienting LC molecules can open and close the PBG reversibly!



Controlled optical switching

Kubo et al., Chem Mat. 17, 2298 (2005).



How are these metamaterials made?

• Early implementations

• Lithography + etching:  holes

• Lithography + etching:  posts

• Lithography + etching:  complicated 3d shapes

• Self-assembly:  opals

• Self-assembly:  inverted opals



Early implementations
Much early work (late 1980s) was done using microwaves 
rather than IR or visible light.

Vastly easier to assemble materials - can be done by hand with 
simple tools!

D. Smith, UCSD



Holes and posts

For 1d and 2d systems, basic lithography and etching are 
typically the way to go:

Krause et al., Prog. Quant. Elect. 23, 51 (1999).



Complicated 3d shapes

Sandia

Clearly executing 3d periodic 
architectures many 
wavelengths deep by doing 
purely surface processing (like 
previous slide) is incredibly 
challenging.

Best approach lithographically 
is to use either multilayered 
starting substrates (as we’ll see 
in micromachining), or 
interference lithography and 
photopolymerization.

Big advantage of lithography:  controlled fabrication of defects 
(cavities, waveguides, etc.)



Opals

Natural opal looks opalescent because of intrinsic photonic band gap 
properties due to its structure.

Opals consist of hydrated silica spheres ~ hundreds of nm in diameter 
stacked in regular patterns.

Through work with colloids, it is possible to create artificial opal 
structures by self assembly:

University of Sheffield, UK



Inverted opals

Another exciting variant on this is to use self-assembly to create an 
opal structure, infiltrate a high index material (Si?  Se?  TiO2?), and 
remove the original opal spheres, to get the highest possible 
dielectric contrast. 

NEC

At right, an inverted opal 
photonic crystal made by 
infiltration growth of 
amorphous Si by low 
pressure chemical vapor 
deposition.  The original 
spheres were then etched 
away.

Big advantage of self-assembly:  large volume 3d periodic 
structures are naturally produced!



Conclusions:

• 3d structuring of dielectics on the nano scale makes possible 
an enormous variety of optically interesting structures.

• Tremendous technological potential here, with top-down and 
bottom-up assembly techniques both likely to play a role.

• Eventual goal:  all-optical processing of information.

• Moral:  possible hidden opportunities out there even when 
the essential physics is “well understood”.
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