
PHYS 534:  Nanostructures and Nanotechnology II

• Logistical details

• What we’ve done so far

• What we’re going to do:  outline of the course



Logistics

Prof. Douglas Natelson
Office:  Space Sciences Bldg., Rm. 329
Phone:  x3214
E-mail:  natelson@rice.edu

Lectures: MWF 13:00 - 13:50

Problem sets:  mostly weekly, handed out Wednesday due 
following Wednesday. (45% of grade)

First paper (25%)

Second paper (25%)

Participation (5%)

Course webpage:  http://www.owlnet.rice.edu/~phys534



More logistics

Text:  no specific text.  There will be some written lecture notes, as 
well as handouts based on a number of books.  Also a large number 
of papers.  I’m working on a textbook for this course and 533.  If by 
some miracle I am able to get draft sections into workable form this 
semester, I’ll hand them out accordingly.

Goal:  to make you literate about the physics of nanostructures and 
their current and future roles in technology, to the point where you at 
least know what to consider and where to look for more information.

Smaller class size may mean that we can have more discussions and 
less pure lecturing.

Assignments will include readings of papers so that we can talk 
about them in class, as well as some very brief written assignments 
(paragraph-length).



What you’ve done so far
Review of condensed matter physics

Band theory 

Electronic properties of bulk solids

Finite size effects for quantum systems

Physical electronics - industry demands

Semiclassical

Quantum effects:  Tunneling, Landauer-Buttiker

Nanoelectronics

Nanoscale FETs

Single electron devices

Molecular electronics



What you’ve done so far

Magnetism and electronics - industry demands

Domains 

Couplings between magnetism and current

Nanomagnetism

GMR, TMR, MRAM



What we’re going to do:

Physical optics

Photonics

Nanophotonics

Continuum mechanics

Microelectromechanical systems (MEMS)

Nanoelectromechanical systems (NEMS)

Fluid mechanics

Micro- and nanofluidic devices

Integrated nanosystems:  nanobiotechnology, sensors

Overall theme:  new developments in manipulating matter at the 
nanoscale lead to very exciting commercial and scientific possibilities.



Physical optics

Image from Hyperphysics (GSU) Image from FSU

Refresher about E&M field propagation and effects of interfaces:

• Bragg reflectors, dielectric mirrors, optical waveguides (fibers)

• Basics of lasers

• Evanescent waves, near-field effects, plasmons



Photonics

Figure from Parry and Khan, 
Oxford University Mat. Sci.

Photonics and optoelectronics - industrial needs

• Semiconductor lasers

• Resonators

• Interferometers and optical switching

http://www.physik.uni-osnabrueck.de



Photonics

Figures from Weber et al., Science 287, 2451 (2000).

Nanostructured photonic materials:  polymer-based mirrors and modulators



Photonics

Figures from Vlasov et al., Nature 414, 289 (2001).

Photonic band gap materials for integrated photonics



Photonics:  near-field

Univ. of Kansas

Bell Labs

Near-field + evanescent fields for patterning and imaging well 
below the diffraction limit.



Photonics:  “superresolution”

Huang et al., Science (2008), in press.



Photonics:  plasmons

Sub-wavelength metal 
nanoparticles or metal surface 
patterns exhibit plasmon
resonances.

These lead to:

• remarkable optical properties

• local concentrations of 
electric field intensity

• possibility for controlled 
manipulation of optical energy 
at small scales.

Halas lab



Photonics:  novel spectroscopies
Jiang et al., J. Phys. Chem. B 107 9964 (2003)

Nanostructured metals

• Colloids

• Nearly-complete nanoshells

• Nanoscale electrodes

Small gaps in metal surfaces ->   
dramatically enhanced local electric 
fields when illuminated.

Raman intensity ~ |E|4

Result:  enhancements of Raman 
scattering by up to 1014 (!)

Ward et al., Nano Lett.  7, 1396 (2007)



Photonics:  superlenses and metamaterials

Ozbay et al., Science 311, 189 (2006)

• Beating the diffraction limit.

Schurig et al., Science 314, 977 (2006)

• “Invisibility cloaks”.



Continuum mechanics

θ(x)

x

• Basics of continuum elasticity theory

• Bending of beams; torsion of rods

• When should continuum theory break down?



MEMS / NEMS
Commercial application:  accelerometers

Analog Devices ADXL330



MEMS / NEMS

Commercial application:  gyroscopes

Physics of operation, detection, and limitations of state of the art 
micromechanical devices.



MEMS / NEMS

Commercial application:  optical switching



MEMS / NEMS

Fundamental science:

• Quantum forces

• Quantum limits on resonators + 
damping

• True quantum mechanics.



MEMS / NEMS

Fundamental science:

• Origins of friction

• Superlubricity (!)

Falvo et al., Phys. Rev. B 62 R10665 (2000)

no friction

friction

Hirano et al., Phys. Rev. Lett. 78 1448 (1997)



Fluid mechanics

• Dimensional analysis and scaling

• Basic fluid mechanics

• Viscosity and laminar flow:  “Life at low Reynolds number”



Microfluidic devices

Combine micro / nanofabrication capabilities and fluids to 
contrl fluid flows on very small length scales.

Very low Reynolds numbers = extremely laminar flow.

Kenis et al., Science 285, 83 (1999)



Microfluidic devices

Knight et al., PRL 80, 3863 (1998).

Hydrodynamics allows manipulation and confinement of 
nanoscale quantities of fluids.



Microfluidic devices

Can make valves, 
pumps, etc. using 
elastomers and 
microfabrication.

Result:  “Lab-on-a-chip” 
capabilities.

Thorsen et al., Science 298, 580 (2002).



Microfluidic devices
Takayama et al., Nature 411, 1016 (2001)

Makes possible studies of individual cells, sorting of cells, 
manipulation of individual macromolecules, etc.

Craighead group, Cornell



Nanoscale fluid manipulation

Pure science issues, too:

• No-slip condition at walls?

• Breakdown of continuous medium properties in confined 
geometries?



Nanobiotechnology
Soong et al., Science 290, 1555 (2000)

Combine top-down 
nanofabrication (Ni wires, 
SiO2 posts) with biochemical 
tools (histadine tags, F1-
ATPase biomolecular motor).

Result:  ATP-powered 
“propellers”.



Nanobiotechnology

http://golgi.harvard.edu/branton/index.htm

Using artificial nanopores and sensitive electrical measurements to 
do single-strand DNA and RNA sequencing.



Nanobiotechnology

http://golgi.harvard.edu/branton/index.htm

Using nanowires and surface chemistry to detect cancer markers.

Zheng et al., Nature Biotech. 23, 1294 (2006)



Summary:
We’re going to look at several other areas of technology, and see where 
the ability to manipulate matter on the nm scale is increasing our 
capabilities and understanding.

These include:

• Photonics

• Micro-and nanomechanics

• Microfluidics

• Nanobiotechnology

Will conclude with some overview and perspective on nanotechnology.



Next time:

Review of physical optics

Light at interfaces



Physical optics

Maxwell’s equations and waves

Fourier analysis and dispersion

Boundary conditions and interfaces

Total internal reflection

Evanescent waves

Microscopics of media:  dispersion

Diffraction 

The near-field



Maxwell’s equations (no sources)
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Combining these quickly gives wave equations for the fields: 
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Wave equations
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These are wave equations.  For uniform media, the solutions consistent 
with these and Maxwell’s equations are plane waves.

Let’s start in the linear world, where we believe in superposition.  Then 
we can break down any general solution into Fourier components:
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0)( )(
0

22 =+− −⋅ tiek ωμεω rk
kE

0)( )(
0

22 =+− −⋅ tiek ωμεω rk
kH



Phase velocity and field strengths
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This is the dispersion relation, and it tells us the phase velocity
of the waves:
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Field directions (uniform media)
00 0 =⋅→=⋅∇ kEkEεGauss’ law:

Electric field is transverse to direction of propagation.

Similarly, since kk EkH 00 ~ × magnetic field is also transverse.

This wave is linearly polarized:  electric (magnetic) field is always 
oriented along y-axis (x-axis).  Wave propagates in -z direction.

electric field

magnetic field



Complex vectors

From our notation, you’ve already guessed that E0k and H0k are 
complex vectors, where each cartesian component is complex, and 
the physical field is the real part of the complex vector.  

For example,
tii
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0 yxE k

So, at ωt = 0, the (real part of the) field points along x.
At ωt = π/2, the field points along -y.

One could rewrite the real part of this as:
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With different magnitudes Ex and Ey, this is elliptically 
polarized light.



Superposition

In linear media, we can write a generic field configuration as a 
superposition of plane waves.  Starting from a given electric field 
at t = 0, and using the properties of Fourier series,

∫ ⋅−
− =+ rrEEE rk

kk
3

2/3
*
00 )0,(

)2(
2 de i

π
Knowing direction of propagation, can then pick out Fourier 
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Group velocity and dispersion
Consider a generic wave built up from components this way:
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We want to time-evolve this:
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Obviously, if ω is proportional to k, then the whole shape of 
ψ has just been translated by a distance ωt/k.

If ω depends on k, and the wavepacket is “localized” around 
some k0, we can Taylor expand: 
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Group velocity and dispersion
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So, the envelope of the wave moves forward at velocity vg.  
The individual components move with their phase velocity.

Other velocities:  front, signal, energy….



Poynting’s theorem and vector

Start from Ampere’s law and dot with E:
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Energy densities
Evaluating this for the plane wave case, we have to remember 
that it’s the real parts of the complex fields that matter.

In free space,
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Ugly!  If all we care about, though, is the time-average, 
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Time averaged Poynting vector

Can follow same idea:
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Again, looking just at time average,
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Energy densities and superposition
What about superposing waves with different wavevectors?

General rule:  for nonlinear quantities (like energy density), need 
to write down full expression for real fields, then square to find 
energy densities.

For linear media, we get a bit lucky, and the final answer ends up 
looking like:

kEE kk
3*

004
dE ∫ ⋅=

εE

That is, we can find the energy content for each frequency (or 
wavevector), and add them.  Again, this is something of a 
lucky break.



Interactions with media

The previous expressions can be complicated when realistic 
media are involved.

We’ll ignore magnetic media, and assume .0μμ →

Potential complications:

• Dielectric “constant” can depend on frequency (dispersion).

• Dielectric “constant” can depend on direction (tensor!).

• Dielectric “constant” can be complex (conductors).

• Dielectric “constant” can be spatially varying (interfaces).



Complex dielectric function
• Remember, a complex ε(ω) just means that polarization 
doesn’t have to be in phase with the electric field.  

• The changing polarization can take energy from the 
electric field, causing damping.
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Kramers-Kronig relations

It is possible to use the analytic properties of ε(ω) (which 
come from the causal definition of the dielectric function) to 
relate the real and imaginary parts to each other.

The results are: (see Jackson, p. 310ff)
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We will see shortly that the imaginary part of ε(ω) is 
related to conductivity and absorption.  Thus, one can 
measure an absorption spectrum and infer dielectric 
properties, and vice-versa.  



Reflection and refraction at interfaces
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Reflection and refraction at interfaces
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Boundary conditions

• The tangential component of E must be continuous. 

• Longitudinal component of B (and H here) must be continuous.

• Tangential component of H must be continuous for equal μ.

• Longitudinal component of D must be continuous.

( ) 0000 =×−+ nEEE tri

( ) 0000 =⋅×−×+× nEkEkEk ttrrii

( ) 0000 =××−×+× nEkEkEk ttrrii

( )( ) 002001 =⋅−+ nEEE tri εε



TE wave at a single interface
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Apply cont. of tang. E at x = 0;
must be true for all y and z, including
origin.

This tells us that kiy = kry = kty.
Since ki = kr, this immediately gives 
that angle of incidence = angle of 
reflection.

Similarly, one finds
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TE wave at a single interface
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Using the tang. H condition gives a 
second equation,
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We now have two equations, two  
unknowns, and can find the reflected 
and transmitted amplitudes in terms 
of the incident amplitude: 
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This is an example of a Fresnel formula.



TM wave at a single interface
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Can do same thing for case where 
polarization is offset by 90 degrees.

Can then do any version of 
polarization by superposition….

Skipping to the result,
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Note that an arbitrarily polarized incident wave can lead to a reflected 
wave (for example) with quite different polarization.  Remember this….



Percent polarization

Suppose we have two waves of same amplitude that differ in 
frequency by some small amount, Ω.  The electric field at some 
fixed position from the superposition of the two looks like:
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The polarization at this position looks like it’s varying in time 
at a frequency Ω.

A very slow detector will see an average of all polarizations, 
and its output would be indistinguishable from one 
illuminated by unpolarized light.

Now suppose amplitudes of two frequency components differ 
slightly….



Percent polarization and Stokes parameters
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If you think about a slow y-polarized 
detector and the intensity it sees, you find 
that it’s equivalent to an unpolarized wave 
containing the fraction (1-p)2/(1+p2) of the 
energy, while the polarized wave contains 
2p/(1+p2) of the energy.

Colloquially, the wave has a fractional 
polarization of 4p2/(1+p2) in the y-direction.

Useful quantities:  Stokes parameters 
(assuming x-dir. propagation)
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Total internal reflection
Returning to waves at interfaces, it’s clear from Snell’s law that 
something weird happens when .sin 21 nn i >θ

The result is total internal reflection; cos θt becomes purely 
imaginary.  The reflected amplitude is equal to the incident 
amplitude (conservation of energy).  

The reflected wave picks up a phase shift, though, that depends 
on the direction of polarization.

For TE waves, 
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Evanescent waves

The EM fields that extend out into the 
second material are an example of an 
evanescent wave.

The x-component of the wavevector in 
medium 2 is κθω inn

c
ik itx ≡−= 2

2
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We picked the physically reasonable 
positive root, so that the fields decay
exponentially moving into medium 2.

Note: the wave in medium 2 actually 
propagates in the y-direction, so there’s 
no dissipation here.  Look at avg. 
Poynting vector (TE case):
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No average energy flux into 
medium 2!

Plug in numbers for visible light (500 nm wavelength), n1=1.5, n2 = 1, 
θi = 60 degrees gives ~ 600 nm.



Waveguides

Total internal reflection is the physics that permits one to make 
optical waveguides (e.g. optical fibers).

There are two basic approaches to analyzing optical waveguide 
structures:

• Ray optics (throws out intensity and phase information, but 
can be mathematically simpler and revealing sometimes)

• Wave-field method (actually solve Maxwell’s equations, 
keeping track of all boundary conditions)

A couple of general points:

n=1.5

n=1



Waveguides n=1.5

n=1
• (Ray optics picture) Because of lateral bounces, longitudinal 
propagation (of energy, signals, etc.) is typically slower than just c/n.

• (Wave field picture) Solution to boundary value problem leads to 
well-defined modes that are naturally orthogonal.  That is, in a 
completely linear medium, a waveguide will only pass radiation of 
particular wavelengths; furthermore, populating one mode does not 
affect propagation in the other modes.

• (Wave field picture) Fields from these modes extend outside the total 
internal reflection interface.  Placing two waveguides in close 
proximity can cause mixing - completely analogous to our work on 
quantum wells from last semester.

• Real optical fibers can be very complicated:  birefringent; dispersive; 
lossy; etc.



Loss
What do we mean by loss?  We’ll see a specific case in a minute.  
General idea:  EM wave does work on something, and that 
energy is lost from the EM wave.  

Manifests itself as a complex index of refraction.  Remember, 

Suppose there’s a damped charged impurity bound by a 
harmonic potential that interacts with the EM wave:
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Can solve for the polarization, assuming N of these per 
unit volume:
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Loss
Dielectric constant is then:
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Can take square root of this, and look at real and imaginary parts of 
k = n(ω) ω /c to find the absorption coefficient.

Real and imaginary parts of dielectric constant look like:

Re[ε]

Im[ε]
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