PHYS 534: Nanostructures and Nanotechnology II (Spring 2009)

This is a lecture course designed to provide an introduction to the physics of nanostructured systems, their current roles in technology, and the likely future impact of such systems on industry. This course is part of the Sloan Professional Masters in Nanoscale Physics, and should be suitable for first-year graduate students and advanced undergraduates.

Logistical Details

Instructor:  Prof. Douglas Natelson
Office:  Space Sciences Bldg., Room 329
Contact information:  x3214,
Course meets:  MWF, 13:00-13:50pm., BL 123
Office hours:  My door is open, but you may want to call ahead to make sure I'm around.
Text:  There is no official text.  During the semester I will provide some lecture notes, and additional material from a variety of references - see below.

Any student with a disability requiring accommodations in this course is encouraged to contact me after class or during office hours.  Additionally, students will need to contact Disability Support Services in the Ley Student Center.

Introductory remarks:  What are nanostructures and why should you care?

A nanostructure is reasonably defined as an object possessing at least one critical dimension less than 100 nm in extent.  By that defintition nanostructured systems are all around us all the time, an are already prevalent in technology.  Certainly molecules fit the bill, and chemists have effectively been performing nanoscience for many years, albeit with large numbers of nanostructures .  Within the last 20 years, however, a new set of tools have been developed that allow precise engineering of materials on scales approaching that of single atoms.  Simultaneously, progress has created an ever-increasing demand for further miniaturization of existing technology, to the point that the physical principles on which that technology is based are at the edge of their validity.  

This is a consequence of a simple yet profound observation:  the properties of matter on the nanometer scale can be vastly different than those on the macroscopic scale.  The borders between physics, chemistry, and materials science become blurred, and lessons may be learned from molecular biology, the nanoscience of living things.

When matter is confined or structured on the nanometer scale, some physics that matters little in bulk systems may dominate important properties like electrical conduction, mechanical strength, or equilibrium structure.  The newly relevant physics may have its origins in classical effects:  e.g. the classical charging energy of a capacitor may exceed room temperature thermal energy if the capacitor is made small enough. Alternately,  new  phenomena may arise statistically from the reduction in N, the number of atoms, from a thermodynamically large value (1022) to a small value (100):  e.g. as the surface to volume ratio for a metal cluster becomes very large, the thermodynamically stable cluster crystal structure can change dramatically.  Finally, quantum mechanical effects (e.g. tunneling, quantum interference), typically relevant at very short length scales, may become dominant when system sizes approach the nm regime.

Understanding the physics of matter structured at the nm scale is one of the most active areas of research today. The reasons are clear:  access to this new size scale is of fundamental scientific interest, and the technological importance of the knowledge gained is potentially astronomical. In many ways this is reminiscent of solid state physics research in around 1950.  Scientists are making gains in understanding the fundamental properties of these new systems; simultaneously they are making laboratory demonstrations of possible technological spin-offs; industrial adoption of these systems is just getting off the ground; and forecasting the long-term industrial impact fifty years down the line is essentially impossible.  It's a fairly safe bet, however, that the physics of nanostructures will have a massive impact on all of us - as we'll see in this course, it already has.

to top of text

The style of the course

This course is a continuation of PHYS533.  As such, I will not spend the first several weeks of the course on a review of solid state physics, as I did last semester.  Rather, we will focus our efforts on three main topics.  For each topic, I will provide some background information about the relevant physics.  Then we will examine the state-of-the-art in the topic, discussing the importance of nanoscale phenomena.  We will then consider future directions in the topic, with an emphasis on relevant physics at the nanometer scale.

To top of text

Structure and grading

The course will consist of three one-hour lectures per week.  There will be (roughly) weekly problem sets, given out on Wednesday and due the following Wednesday at the beginning of class.  Late work will only be accepted if due to illness or emergency - I want a legitimate excuse.

Understanding the material is at least as important as getting a numerically or formulaically correct answer to the problem.
If your reasoning isn't obvious, please write little explanations of what you're doing and why, so partial credit can be assigned in a reasonable way.

Unsurprisingly, it's rather difficult to come up with lots of homework problems that are really relevant, produce physical insight when solved, and are tractable in a reasonable time frame.  You will find that most of the problems I assign are not terribly calculationally intense, and often involve some kind of verbal interpretation of what's going on.  Learning to communicate your physical understanding through writing is an important and often neglected skill, so please put some effort into it.

The problem sets are not pledged.  I encourage you to discuss the problem sets with each other.  You may give each other guidance and advice on problem solving approaches, and you may compare solutions to check your work.  However, you may not copy solutions from another student, and the problem sets you submit must be entirely your own work and your own words.  If you use a book, journal article, or website, you must cite the relevant material.  If you collaborated strongly with other students, cite them as well - this is intellectual honesty.

I'm going to try my best to do the lectures in PowerPoint format, and to make them available over the Web afterward. There will be additional notes and handouts available from the website as well - please check here if you miss class.  Furthermore, there will be a few guest lectures during the semester.

For now, I'm planning on the following grading scheme:

50% homework
20% first paper
25% second paper
5%  participation

The papers will be pledged.  A list of possible topics will be released later in the semester, along with details of what I want.  These papers must be your own work - you must cite all sources used, and if you quote someone else's material, you must clearly indicate that.  Treat this like a real-world document you'd be sending to referees, or like a technical memo you'd be sending to your boss.  There are two papers because I think it's better to give you a chance to get some feedback on your writing rather than have it be a "fire and forget" process.  At the beginning of the course, I will make you sign a document indicating that you understand this.  I know this sounds childish and legalistic, but experience has taught me that it is, unfortunately, a good idea.

"Participation" is tough to quantify, but I'd like to try this to encourage you to ask questions, particularly about the reading assignments.  Trust me - if there's something in the course you find unclear, you're unlikely to be alone.  Talking about these topics with each other and with me is a better way to learn the material than trying to do it in a vacuum. 

To top of text

Honor Code issues

All work on exams and problem sets is subject to the Honor Code.  I take the Honor Code seriously, and I expect you to do the same.  The homework and final paper situations have been described above.  If you have any questions about this, raise them with me at the beginning of the course.

Here is the “Grading and Honor Code policy” statement that all students in this course are required to read, sign, and return to me.

To top of text

Course Outline

This is a brief outline of topics to be covered in the course.  A detailed breakdown as well as a schedule of classes is available here, and will be updated as the semester progresses.  We may have to shift gears and rearrange topics, but I hope to get through all this.

I. Overview and introduction
II.  Physical optics
Reflection and refraction; Frauenhoffer diffraction; DBR mirrors; lasers
III.  Photonics
Optical fibers; semiconductor lasers; nonlinear optical effects; solitons; optical switching; single photon devices
IV.  Continuum mechanics
Stress and strain; elasticity; mechanical properties of solids; damped nonideal harmonic oscillator
V.  Micro- and nano-electromechanical systems (MEMS and NEMS)
Fabrication; mechanical properties of MEMS and NEMS; accelerometers; motors; gyroscopes
Thermal properties of NEMS; quantum effects; Casimir force; mass detection + charge manipulation; tribology
VI.  Fluid mechanics
Dimensional analysis:  an example of what physicists can learn from engineers
Inviscid fluids:  a primer
Viscous fluids:  a primer
VII.  Micro/nanofluidics + advanced sensors
Life at low Reynolds number
Capillary forces; electrophoresis+electroosmosis;

To top of text


Photonics books:

M. Born and E. Wolf.  Principles of Optics.  Cambridge.  Now in its 7th edition.  The classic book on optics, though not necessarily that readable.

E. Hecht.  Optics.  Addison Wesley.  A standard textbook on modern optics.

J.D. Joannopolous, R.D. Meade, and J.N. Winn.  Photonic Crystals.  Supposed to be an excellent book for photonic band gap physics.

L. Novotny and B. Hecht.  Principles of Nano-Optics  The best book I know relevant to nanophotonics.

MEMS/NEMS books:

M. Gad-el-Hak, The MEMS Handbook, CRC Press. Something like the bible of this area.

M.J. Madou, Fundamentals of Microfabrication, CRC Press. The other bible of this area.

A.N. Cleland, Foundations of Nanomechanics, Springer. Great book from the nano perspective.

Micro/nanofluidics books:

N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech.

G. Karniadakis, Microflows and Nanoflows: Fundamentals and Simulation, Springer.

General solid state:

H. Ibach and H. Luth. Solid State Physics, an Introduction to Theory and Experiment.  Springer-Verlag.  This is a good general solid state physics text, with little experimental sections describing how some of this stuff is actually measured.  Its biggest flaw is the number of typographical mistakes in the exercises.

N. Ashcroft and N.D. Mermin. Solid State Physics.  The classic graduate text.  Excellent, and as readable as any physics book ever is.  Too bad that it ends in the mid 1970's....

C. Kittel. Introduction to Solid State Physics.  Also a classic, and also very good.  Like A&M, the best parts were written 25 years ago, and some of the newer bits feel very tacked-on.

Michael P. Marder.  Condensed Matter Physics.  Wiley.  A very comprehensive newer book, intended as a more current alternative to Ashcroft and Mermin.  Seems very good.

P.M. Chaikin and M. Lubensky.  Condensed Matter Physics.  More recent, and contains a very nice review of statistical mechanics.  Selection of topics geared much more toward ``soft'' condensed matter.

W. Harrison. Solid State Theory and Electronic Structure and the Properties of Solids. Pretty good books written by a master of electronic structure calculations.  Added benefit:  they're quite inexpensive!
D.L. Goodstein. States of Matter, Dover.  Excellent - somewhere between a stat mech and a solid state text.  It's very readable, and a very good deal since it's also Dover book.
P.M. Chaikin and T.C. LubenskyPrinciples of Condensed Matter Physics. Cambridge University.  Has very good chapters on phase transitions.  Avail. in paperback, so it's not absurdly expensive.

Nanoelectronics and nanoscale physics:

Y. Imry.  Introduction to Mesoscopic Physics.  Oxford University Press.  Very good introduction to many issues relevant to nanoscale physics.  Occasionally so elegant as to be cryptic.

D.K. Ferry and S.M. Goodnick.  Transport in Nanostructures.  Cambridge University Press.  Also very good, and quite comprehensive.
S. Datta. Electronic Transport in Mesoscopic SystemsCambridge University Press.  Again, very nice and pedagogical.  Much of my treatment of the Landauer-Buttiker approach is taken from here.

S.M. Sze.  Physics of Semiconductor Devices.  Wiley.  The bible of semiconductor device physics.  Not really "nano", but an excellent reference for understanding (fairly) modern semiconductor electronics.

C. Weisbuch and B. Vinter.  Quantum Semiconductor Structures.  Academic Press.  A very good resource on heterostructure devices, including quantum well structures.

to top of text

Resources on the web

Photonics resources - Online textbook from Rutgers:  Electromagnetic Waves and Antennas - photonics bibliography - MIT photonics roadmap - photonic band gap resources - Prof. Halas' group - Cornell's nanophotonics group

MEMS / NEMS resources - free textbook on continuum mechanics - UTA course on MEMS - MEMS with a bio spin - MEMS class at Utah - Roukes' group at CalTech

Micro/nanofluidics resources

– Microfluidics theory text – Microfluidics primer - Duke microfluidics - Steve Quake's group

Nano-based sensing - Ivan Schuller's group @ UCSD - Scott Manalis' group @ MIT - Basel “Electronic Nose” page

Good physics-related websites  - Arxiv e-print server - the latest hot results, but no peer review.... - IBM Research - lots of neat topics

To top of text

Last modified 1/07/08 by