Alternatives to standard MOSFETs

A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include:

• Silicon-in-insulator
• Silicon-on-“nothing”
• Double-gate FETs
• FinFETs
• Vertical FETs
• Vertical replacement gate FET
• Ballistic FET
• Tunneling FET

What problems are we really trying to solve?

There are several specific device physics problems that are addressed by these proposals:

• Short-channel effects (lack of saturation of I_D)
• Short-channel threshold modification (drain-induced barrier lowering)
• Parasitics and isolation
• Doping problems and punchthrough

There are also manufacturing / engineering problems:

• Lithographic definition of very short channels
• Alignment of gate electrode with channel
Silicon-on-insulator

The basic idea:

Build transistors on a *buried oxide layer* rather than on bulk doped Si.

- Lowers source and drain capacitance to increase speeds.
- Reduces parasitic effects (*e.g.* unintentional bipolar transistor action).
- Solving Poisson’s equation shows reduced “body” effects such as punch-through + V_T modifications.

- Partially depleted SOI: still some small “body” that can lead to slower speeds + parasitic effects.
- Fully depleted SOI: best possible situation, but considerably tougher to fabricate with high quality.

How to produce buried oxide layer?

- Oxygen implantation + annealing
- Growth (epitaxy) on top of preexisting insulator
- Wafer bonding
Silicon-on-insulator

- IBM already selling high-performance chips based on SOI technology.
- Much interest in SOI from MEMS community (sacrificial layers) + telecommunications (integration of optical waveguides, amplifiers) also.

Silicon-on-“nothing”

Basic idea: use an extremely thin dielectric (or even air!) cavity under the channel.

Gives the benefits of fully depleted SOI, but may not require whole-wafer SOI processing.

Takes advantage of selective etching of well-controlled sacrificial SiGe layer.
Double-gate FET

Best way to mitigate drain influence is to increase field effects of gate.
One method: *double-gating*.

Double-gate FET

Ideal DGFET shown at right.
Design minimizes parasitics and coupling capacitances.

For devices this small, quantum effects are significant:
Both symmetric DGFETs and backgate FETs have threshold voltages substantially greater (~100% !) than just classical electrostatic prediction.
Double-gate and FinFETs

The scheme on the previous page shows one approach: again using a sacrificial layer (with very well-controlled thickness) to define a critical dimension: the channel thickness.

Another version of this is the FinFET:

- Uses a thin “fin” of Si as the channel, and wraps the gate around/over the fin.
- Allows large (low resistance) source & drain contacts.
FinFET

An alternative geometry.

Engineering:

- Channel length set by layer thickness rather than lithography.
- Packing density not set by channel length anymore.
- Wrap-around gate possible.
- Stronger confinement effects than planar devices.

Vertical FET
Vertical FET

Gate = highly doped polysilicon.

To find V_T, must keep track of bands throughout device.

Criterion for inversion: when potential at channel/oxide interface is some small voltage V_{offset} below conduction band.

Bands in channel bend until depletion; then all shift.

Rectangular double-gate MOSFET Threshold voltage:

$$ V_T = V_{ox} - V_{offset} = -V_{offset} + \frac{eN_A t_g f_s}{2 \varepsilon_f \varepsilon_0} $$

Cylindrical vertical MOSFET threshold voltage:

$$ V_T = V_{ox} - V_{offset} = -V_{offset} + \frac{eN_A r_s^2}{2 \varepsilon_f \varepsilon_0} \ln \left(\frac{r_s + t_x}{r_s} \right) $$

Here, $t_x =$ oxide thickness, $\varepsilon_x =$ oxide dielectric constant.
Vertical replacement gate FET

One particular implementation of the vertical MOSFET.

Lucent team (Hergenrother, Monroe) developed to be fully compatible with standard CMOS processing for easy integration:
VRG FET

VRG FET

VRG FET
Ballistic FETs

For smallest devices, it’s possible to make FETs with channels smaller / shorter than the elastic mean free path in Si.

Room temperature mobility ~ 200 cm2/Vs
Direction-averaged effective mass in Si ~ 0.31 m_0
Result: $\tau \sim 3.5 \times 10^{-14}$ s.
Assuming a nondegenerate source of carriers at room temperature, $v_T =$ thermal velocity $\sim (2k_B T/m^*)^{1/2} = 1.7 \times 10^5$ m/s.

Typical elastic mean free path: ~ 6 nm.
Next lecture we’ll go into these devices in more detail; merges with Landauer-Buttiker picture….

Tunneling FET

- Special case of a quantum-limited FET.
- We already know tunneling probability depends exponentially on barrier height.
- We also know effective barrier can be controlled using a gate - essentially, carriers traversing the barrier region feel the (screened) gate potential.
- It’s possible to make a transistor where tunneling is the dominant transport mechanism.

Two examples:
- Double quantum well tunneling (Sandia)
- Metal-oxide-metal tunneling (ONR)
Tunneling FET

Downsides:
• Uses GaAs.
• Works at 77K.
• Requires thinned-down sample (back-side processing).

Upsides:
• Can be extremely fast (THz speeds).
• More functionality than just regular FET.
• No short-channel effects, effectively.

Metal tunneling FET

Start with metal strip (Ti, Al, Nb).
Use AFM to electrochemically oxidize a ~10-30 nm wide line across strip to act as tunnel barrier.
Substrate is gate in prototype.

Can get significant modulation of tunneling barrier.

Upsides: all metal (!), no short channel effects.
Downsides: labor intensive; fragile; not defect tolerant.
Material approaches to pushing CMOS: strained Si

Can deposit SiGe alloy epitaxially.

SiGe lattice spacing is different than bulk Si. (Alloy is ~ at. 4% Ge)

By overgrowing more Si, can have thin Si channel with large amounts of built-in strain.

This strain changes effective masses + phonon-scattering.

Result: carriers in strained Si can have mobilities ~ 70% higher than in standard bulk Si!

Material approaches to pushing CMOS: SiGe

Another approach just uses the SiGe alloy itself.

MOSFETs don’t work so well in SiGe: interface with oxide is problematic.

Instead, bipolar (PNP, NPN) transistors for high power and high speed.

Results: very high speed (hundreds of GHz) devices, though power-hungry.
Summary:

- A number of clever device-design approaches to mitigating the problems that can crop up in small CMOS devices.
- Recurring theme: using layer thicknesses rather than lithography to define critical length scales.
- Recurring theme: quantum effects can become important (or even essential) in device properties at ~ 10 nm scale.
- Material engineering can be promising as well.

Next time:

The ballistic transistor: where Landauer-Buttiker meets higher temperatures and practical (?) devices.

After that:
- Coulomb blockade and single-electron transistors
- Molecular electronics
- Organic electronics