Physics 112 Laboratory Report Simple Oscillators

Name	Date
Lab Partner	
Free oscillations	
On a separate sheet, sketch one example each of under overdamped decays, indicating the time scale on each.	damped, critically damped and
Measured decay time τ when $R = 0$	
Driven oscillations	
Resonant frequency f_0	
On a separate sheet, sketch v_c vs frequency. Does it loc	ok like Fig. 3?
Approximate phase shift at f_0	
Approximate phase shift at $f \ll f_0$	
Approximate phase shift at $f >> f_0$	
Are the phase shifts consistent with Fig. 3?	
Frequencies for which v_c is reduced by $1/\sqrt{2}$	
Resonant width $\Delta \omega$	
Provide estimates of Q from the	
resonant width $\Delta \omega$	
ratio of v_c to v_p	
decay time τ	
Are these estimates of <i>Q</i> consistent?	

Radio circuit

capacitor setting	frequency (MHz)

Do these frequencies fall within the AM radio band?

Attach sketches of the voltage waveforms at the following locations. Clearly indicate the zero-voltage level in each sketch.

- (a) Across the capacitor, with modulation on, but without the diode in the circuit.
- (b) Across the $1k\Omega$ resistor, with the diode in place.

(c) Across the earphone, with the diode in place.

Explain the difference between (a) and (b) in terms of the action of the diode.

Explain the lack of high frequency (near 1 MHz) signal in (c). Why is the time-average of this waveform not zero?

Describe some of the radio stations you can hear:

capacitor setting	program