Physics 112 Laboratory Report Ampere's Law

Name			Date		
Lab Partner _			_		
Single coil en	pergized				
Normalizatio	n factor B_0				
Step size ds_					
	_	integration path currents going	•	e direction the path was traversed, and th.	
Path name	$\sum B$ (volts)	$\frac{1}{B_0} \sum B \bullet ds$	Expected result		
	(1010)	(cm)	(cm)		
				I	
Normalizatio	n for two-coil g	geometry			
Voltage on 0.	0.5 Ω resistor for	r one coil energ	ized V_1		
Voltage on 0.	.5 $Ω$ resistor for	r both coils ener	rgized in series	V ₂	
Normalizatio	n constant for t	wo-coils B'_0			
Do the coil cu	arrents flow in	the same or opp	osite direction	s?	

Both	coils	energized	

Step size ds _____

Attach a sketch showing the integration paths you used, the direction the path was traversed, and the relative directions of any currents going through the path.

$\sum_{\text{(volts)}} B$	$\frac{1}{B_0'} \sum B \cdot ds$ (cm)	Expected result (cm)
	\sum_{\text{(volts)}} B \tag{(volts)}	$\frac{\sum_{\text{(volts)}} B}{\text{(cm)}} \frac{1}{B_0'} \sum_{\text{(cm)}} B \cdot ds$

Interpret your results in terms of Ampere's Law.