Problem Set #4 — Chapter 24 - 19, 28, 36, 38, 52, 59, 77, 85

19.
both point sources. Ij is given. Using R =a =b and r; = ¢, one can apply the
Law of Cosines (c* = a® + b> — 2abcos0) to find the angle 0, and therefore, the
angle (180° - 0), and then solve for ry, again using the Law of Cosines.
Alternatively, one might recall that the diameter of a circle subtends an angle
of 90° at any point on the circle. Thus the distance from the negative charge
to the point is

28.

(a) The distance from the point in question needs to be determined for

ry=[(2R)2-r2]" =[(50 cm)2 — (30 cm)?] = 40 cm.
The potential at the point is
V = (1/4ngy)(q,/r; + qo/ry)

= (9 x 109 C2/N - m2)[(24 x 10-8 C)/(0.30 m) + (~ 10 x 10-8
C)/(0.40 m)]

=[r5.0x103V]

(b) The work required is

W=qAV=(-02x1006C)5.0x103V-0)= 1.0 x 103 ]]

The negative value indicates that the negative charge wants to “fall” to the higher
potential.

We need to find the potential energy stored in the charge Q distributed uniformly over the
spherical shell. We do this by successively bringing a differential charge in from infinity.
The total potential energy is the sum (integral) of the differential work done. As we bring in
a differential charge, the charge ( already on the shell appears to be a point charge, so the
work required to bring in the next differential charge is

dW = (1/4ne)(q/r) da.

The potential energy is the total work required:
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For a shell with half the radius, we have
U, = %Q2%/4rgy(R/2) = 2U.

The work required to move the charges is



W=AU=2U; -U;=U;=[1/2 Q%4nsR
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52. The potential at the origin from a differential element of
the charge is
dV = (1/4n&y)(dg/R).
To find the potential at the origin, we add (integrate) the
contributions from all elements:

V =[ (1/4ngy)(dg/R)

(1/4ngyR) dq = g/4ngy R = AnR/4ng)R

= 1/46‘0.
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59. As discussed in class and in the book, before the two spheres are connected together, their
potentials will depend on the amount of deposited charge and their spherical radius:

V2 = (1/4n5))(02/12)
V1= (1/4m&y)(Q1/r1)
After connection, the two spheres must have the same potential:
V= (1/4ng))(q1'/r1) = (1/4ng)(Q2'/r2), or Q1" = (ri/r2)a2".
Because charge is conserved we have
qr+a=0q1' +q2.
When we combine these two equations, we get
Q2" = (a1 + q)[r2/(r1 + r2)].

The amount of charge that moves between the two spheres is

Atz =" — G2 = [(d1r2 — Gar)/(r1 + o)

77. Because the electric field is purely radial (from symmetry considerations), we will chose a
radial path from oo to a radial position r within the sphere and set V =0 at r = c. Using
Gauss’ Law, we can derive the electric fields in the different regions as:
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For r inside the sphere, we have
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85.

The potential energy of a charge — g is

U=-qV = |- (qQ/8r5R)(3 — r2/R2)

The variable part of the potential energy has the form of the elastic potential energy of a
spring:

U = wkr2,
so the motion can be an oscillation, like the mass on a spring.

Comparing the coefficients, we have

k=[0Q/4n R

Assume that r; <r,. Place the origin of the coordinate system at the center of both shells.
For r > r, the electric field is identical to that of a point charge, Q = q; + qy, at the origin. So

V= (1/4n0)QIr =|(1/Anep) @i+ gt (12 <)

Between r; and r,, the E-field produced by Qa is zero, so the potential due to g, remains the
same as its value at I';, 1.e., (1/4ngy)q2/12. For i, the E-field is still equivalent to that of a

point charge q; at the origin, so the contribution to V due to q; is (1/4rn&p)q:/r. Add both
contributions up to obtain

V=|(VAngy)(@/r2+qi/r)  (r1 <r<rn).

Once r <ry, there is no electric field, so the potential no longer changes once it reaches its
value at r;. Thus

V= |V4ngy)(Qi/ri + Qo/r2)  (r <ryp).




