
Problem Set #3 – Chapter 23 – 8, 27, 31, 36, 48, 52, 57, 59 

 

 

8. Because the angle between the electric field and the area varies  
 over the surface of the hemisphere, we find the flux by 

integration.  We choose a strip at an angle θ with a thickness R 
dθ, as shown in the diagram.  The area of this strip is  

   
       dA = (2πR sin θ)R dθ = 2πR2 sin θ dθ. 
 
 From the diagram, we see that θ is the angle between    

G
E  and     d

G
A ,  

 so we have 

   

 This is the flux of a constant field through the area of a circle of radius R. 

27. From the symmetry of the charge distribution, we know that the electric field must be radial, 
away from the center of the balloon, with a magnitude independent of the direction.  For a 
Gaussian surface we choose a sphere centered on the balloon with radius r = 50 cm.  On this 
surface, the field has a constant magnitude and    

G
E  and     d

G
A  are parallel, so we have       

G
E ⋅ d

G
A = E 

dA.  When we apply Gauss’ law, we get 

         
G
E ⋅ d

G
A  = E4πr2 = Q/ε0 , which gives  

    E  = (1/4πε0)(Q/r2)  

   = (9 × 109 N · m2/C2)(5 × 10–7 C)/(0.50 m)2  

   = 1.8 × 104 N/C;       

       = 
G
E     (1.8× 104 N/C) ˆ r . 

 If the balloon shrinks, the enclosed charge does not change, so the electric field will be the 
same:  

       =     
G
E (1.8× 104 N/C) ˆ r . 

  

Φ = E · dA = E (cos θ) 2πR 2 sin θ dθ
0

π/ 2

= E2πR 2 sin 2 θ
2 0

π/ 2
= EπR 2.
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31. From the symmetry of the charge distribution, we know that the  

r

R1

R2 electric field must be radial, with a magnitude independent of the  

 direction.  For a Gaussian surface we choose a sphere of radius r.    

 On this surface, the field has a constant magnitude and    
G G
E  and  A   d  

      
G
E ⋅

  
G
A = E dA.  The charge density is   are parallel, so we have d

  ρ = Q/[4/3π(R2
3 – R1

3)]. 

 For the region where r < R1 , we apply Gauss’ law: 

  = EA = Q/ε0; AE
GG

d⋅

  E4πr2 = 0, because there is no charge inside the Gaussian surface, which gives 

  E = 0   for r < R1. 

 For the region where R1 < r < R2 , we apply Gauss’ law: 

  = EA = Q/ε0; AE
GG

d⋅

  E4πr2 = ρ4/3π π(r3 – R1
3)/ε0 ,  which gives 

  E = ρ4/3π π(r3 – R1
3)/(4πε0r2) =  Q(r3 – R1

3)/4πε0(R2
3 – R1

3)r2;  

      
G
E  =     [Q(r 3 − R1

3)/ 4πε0 (R2
3 − R1

3 )r 2 ]ˆ r    for  R1 < r < R2 .  

 For the region where R2 < r, we apply Gauss’ law: 

  AE
GG

d⋅

    
G
E     (Q / 4πε0r 2) ˆ r    for  R2 < r

= EA = Q/ε0; 

  E4πr2 = Q/ε0 ,  which gives 

  E = (Q/4πε0r2); 

   = . 

 

36. Because the slab is infinite, we know from symmetry that the field must be perpendicular to 
the slab, with a constant magnitude for a constant distance from the slab.  If r is positive, the 
field will be away from the slab.  For a Gaussian surface we choose a cylinder of length 2L 
and area A, centered on the axis.  On the curved side of this surface, the electric field is not 
constant but     

G
 and E     d

G
A  are perpendicular, so     

G
d

G
A = 0.  On the ends, the field has a constant E ⋅



magnitude and      and       
G
E d

G
A  are parallel, so     

G
E ⋅ d

G
A = E dA. 

 To find the field outside the slab, we use the fact that the field will be away from the slab.  If 
we place our Gaussian cylinder so that one end is at z = L and the other end is at z = – L, the 
fields at each end will be directed out of the surface and have the same magnitude.  The 
charge contained within the Gaussian surface will be ρtA (where A is the cross-sectional area 
of the cylinder).  When we apply Gauss’ law, we have 

   
E · dA

  E = ρt/2ε0 away from the slab, where z > t/2  or  z < – t/2. The field is uniform outside 
the slab. 

 To find the field inside the slab, we use the same Gaussian surface, with the ends of the 
cylinder at ± z, where z < t/2.  The enclosed charge is only that part of the slab inside the 
cylinder and will equal ρ2z A. Applying Gauss’ law: 

  
 

      
G
E  =     (ρz / )ˆ k − t/ 2 < z <ε0     where  t / 2 . 

48. If we choose a Gaussian surface around the earth just outside the earth’s surface, so that the 
radius of the Gaussian surface is ≈ Rearth, we have 

   = – EA = Q/ε0, so we have 

  Q = – ε04πR2E  

       = –  [1/(9 × 109 N · m2/C2)](6.37 × 106 m)2(100 N/C) =  – 4.5 × 105 C, on the surface. 

 The surface charge density is  

σ = Q/A = ε0E = (8.85 × 10–12 C2/N · m2)(– 100 N/C) =  – 8.9 × 10–10 C/m2.  
 

52. From Example 23–7, we know that the electric field inside the sphere is 

  E = (Q/4πε0)(r/R3) radial. 

 Because the charges have opposite signs, the force on the point charge is toward the center of 
the sphere, with magnitude 

  F = qQr/4πε0R3, 

 and is a restoring force proportional to the displacement from the center, as in simple 
harmonic motion, with an effective force constant of  

= E · dA
top

+ E · dA
bottom

+ E · dA
side

= EA + EA + 0 = Q/ ε0; which gives

E · dA = E · dA
top

+ E · dA
bottom

+ E · dA
side

= EA + EA + 0 = Q/ ε0; which gives

AE d⋅
GG



  k = qQ/4πε0R3.   

 The resulting motion, with r = R at t = 0, is 

  r = R cos(ωt),      with ω = (k/m)1/2;  the motion is simple harmonic.  

 The period of the motion is 

  τ = 2π/ω = 2π(m/k)1/2 = 2π(4πε0mR3/qQ)1/2. 

 The total energy is the initial potential energy: 

  E = U = ½kR2 = ½(qQ/4πε0 R3)R2 = qQ/8πε0R. 

57. Because there is no charge enclosed by the tetrahedron, the net flux through all sides is 0: 

  Φnet = Φupper sides + Φbottom.  

 Thus we find the flux through the three upper sides from 

    Φupper sides  = – Φbottom = – (E    ) · A(–k )  = + E(½L)(L sin 60°) = 0.433EL2. ˆ k   ̂  

 

59. From the symmetry of the field we construct a Gaussian surface which is a cylinder of length 
L and radius a, with its axis along the axis of the field.  Because the field is parallel to the 
ends of the cylinder, we have 

  = E2πaL  = Qenclosed/ε0 . 

 If there is a charge distribution ρ(r) within the cylinder, we have 

   

AE
GG

d⋅

   Qenclosed = 2πrLρ(r) dr
0

a

. Thus

ε0E2πaL = 2πrLρ(r) dr
0

a

, or ε0Ea = rρ(r) dr
0

a

 We can write the left-hand side as an integral to get 

   

.

   ε0E dr
0

a

= rρ(r) dr
0

a

.

 Comparing the two integrands, we see that  

  ρ(r) = ε0E/r . 

 Note that this function diverges when r → 0.  The required field can be set up only beginning 
at some distance r0 from the axis.  Within r0 only the total charge has to correspond to the 
required field:   



  q/L = ε0E2πr0 , which is finite. 


