Problem Set #1 — Chapter 21 — 10, 22, 24, 43, 47, 63; Chapter 22 -7, 10, 36

Chapter 21 Problems

10. (a) i \.lt
mg mg

(b) Before the charge is added, the cork balls are hanging vertically, so the tension is

T, = mg = (0.2x10-3 kg)(9.8 m/s2) = 2.0x10—3 N|.

After the charge is added, the charge will be shared equally by the two cork balls, and

there is a horizontal Coulomb force. From the force diagram, we apply Y. F =0:

horizontal: Tsin 8=F = qu/rz;
vertical: T cos O=mg.

where 0is the angle of displacement from the horizontal. If we divide the two

equations, we get
tan 6= F/mg = kq*/r>mg = kq?/(2L sin 6)?mg

= (9x10° N - m?/C?)(1x10~7 C)?/[2(0.20 m) sin 8]?(0.2x1073 kg)(9.8 m/s?) =
0.0065/(sin2 ).

This equation has only one unknown, 6, but the presence of trigonometric
functions makes the algebra a little messy. We can solve by calculating both sides
for a range of angles, or even simpler, note that for small angles tan &~ sin 6,
substitute sin € for tan € on the left hand side and solve for sin 6. Using either of

these approaches, we get
sin #=0.19, 6=11°.

Comparing sin 11° =0.191 to tan 11° = 0.194, we confirm our substitution is within the

degree of uncertainty associated with the numbers being used (the mass of the ball is



given as 0.2g, indicating we have uncertainties past one significant figure).

The tension is

T, = mg/(cos 6) = (0.2x1073 kg)(9.8 m/s?)/(cos 11°) = 2.0x103 N

(Not a great amount of change — T, _ T;/(cos 11°) = 1.02*T).

(c) From the analysis in part (b), we have = .

22. For the Coulomb force to be 0.05% of the measured force, we have
F =kq,q,/7%

(0.05x10-2)(7x10~7 N) = (9x10° N - m%/C2)¢2/(0.10 m)?,

which gives

g =R.0x10-11 C|

24. (a) The attractive Coulomb force provides the centripetal acceleration:
F =mo2fr =mra?;
ke?/r2 = mra?, which we write as ke = mr3(21/T)%;
(9x10° N - m?/C2)(1.6x10-1° C)2 = (9.11x10-3! kg)r3[2r/(24 h)(3600 s/h)]?,
which gives r= .
(b) For the hydrogen orbit, we have

(9x10°N - m2/C2)(1.6x10-1 C)2 = (9.11x10-3! kg)r3[2n/(4x10-16 5)]2,

which gives r=1.0x10-1 m|.



43. (a) The three forces acting on g are shown in the figure.
y -
Their magnitudes are ~2q R ¢+ q

F,=F,=k2qq/(2L)?> =2 kq?/L?; =

F3 = kdqq/(2IN2)2 = Y5 kg?/L2.

The net force acting on g is

+2q

Fret = F1+ F2+ F3 = (F2kg?/L2)i + (V2 kg?/L2)] -
{[(V2 kq?/L2) cos 45°)i + [(V2 kq?/L2) sin 45°]]}

= (Vo kg?/L2){[- 2 +N2)/2]i +[(2-2)/2]]}

= ‘(\/3)kq2/2L2, 9.7° above the — x—axis|.

(b) The four forces acting on Q are shown in the figure. Their magnitudes are
F1 = F3=k2qQ/(IN2)2 = kqQ/L?;
Fp = kqQ/(LN2)? = kgQ/2L>;
F4 = k4qQ/(IN2)? = 2kqQ/L2.

To find the net force, we use a rotated x’y’-coordinate

system, as shown on the diagram. Thus

Fnet = F1+ Fo+ F3+ Fyg

= (kqQ/LY)§" - (kqQ/2L2)i" + (kgQ/L2)j "~ (2kqQ/L?)i”

= (kqgQ/L)[-2.5i" +2j’]

=3.2kqQ/L?, 38.7° above the — x"-axis, or 3.2kqQ/L2, 6.3° below the original

-axis|.



@. We align the rod along the x-axis with one end at the

origin, as shown in the figure. The linear charge X

<
— —— O

density is 4 = Q/L, so the charge on the element dx is [
dQ = (Q/L) dx. All elements of the rod produce a force O L g

in the + x-direction. The total force is

L L
e [far= | Shiac= MR A
;" L), (L-x+d)

;:k?_Q’(l rd) = d(qu-l-Qd)iA'

L '"\Lox+d

:kqu( . ) d” L+d

The force on g is ‘kqQ/d(L +d) away from the rod‘.

63. In the equilibrium position, the net force is zero.

From the diagram,

YF, =Fp—mgsin 8=0;
kqq/t? =mg sin 6,
(9x10° N - m2/C2)(2x10-8 C)?/(0.08 m)2 = (0.5x10-3 kg)(9.8 m/s?) sin 6, which gives
sin 0=0.115,  6=|6.67

Chapter 22 Problems

7. (a) With the charges on the x-axis, the electric fields produced by the charges will

have the same magnitude and point in the — x-direction. The resultant field will be
E =2(1/4n&,)q/(L/2)2 (—i ) = — (1/4n&,)(84/02)i .

(b) The fields produced by the charges will have the same magnitude and point in
opposite directions. The resultant field will be E =



(c) %
&
L |d
E{?B @E}v
x

10.

(c) We take a representative point on the z-axis (note — this is the corrected figure —
Figure 22-28 in the textbook has the charges incorrectly located on the x axis). From
the diagram, we see that the electric fields produced by the charges will have the
same magnitude, and the resultant field will point away from the origin. If we call

the distance from the origin d, we have
E = 2(1/4n&,)(q/r?) cosO= (1/4ns,)(2q/r2)(d/r)

= (1/4m&,){2qd/[d? + (€/2)213/2}.

Note, this is the answer given in the back of the book but we can do a little more work and
express the answer in terms of x and z. We begin by noting that the magnitude of the field
will remain the same at all points on the xz plane the same distance d from the origin, and
the direction of the field will point away from the origin. So, along a circle of radius d, the
field will be

E = (/4zrz,){2qd/[d?+ (¢/12)° 2} (sing i +cosp K )
where ¢ is the angle from the z axis in the xz plane and v/ X* +2° = d. Since

cosq =x/ VX* +2° and sing = z/ \/X* +2* , the field can finally be expressed as

E = (Ud7re,){20/[x2 + 22+ (012)°FP?Hx i +zk)

We treat the line of charges as n pairs symmetrically placed about the y-axis.

From the diagram, we see that a pair of charges produces an electric field parallel to

the x-axis. For a pair with 12 =Y 2 + x2, we add the x-components to get the



magnitude of the field:

E =2(1/4n&y)(q/r?)(x/r) = 2qx/4ng,(Y 2 + x2)3/2. y
E+
For all pairs, we have Y>> x, so we get Y o nd E
E =2qx/4ne,Y 3. r E—
-9 g -d4| g -9 g
Because the pairs alternate in sign, the — O OO T OO0 — X
. . . . -5d -3d -d d 3 5d
direction of E will alternate. The electric field 2 2 2 2 2 2
of the ith pair is

E;=[(- 1)2gxj/4ns,Y 3]i, withi=1,2,3, ..., n.
The values of x;are d/2, 3d/2, 5d/2, ..., so when we sum the n pairs, we get
E =YE, =Y[(- 1)2qx/4nsY 3]i = 2q/4ngY 3)(d/2)(-1+3-5+7—..)i.

For the first few terms, the result of the summationis—1,+2,-3,+4, .... Thus the

general result of the summation is (— 1)"n. The resultant electric field is

E = (2q/4ng,Y 3)(d/2)(- 1ymi = (- 1)(gnd/4dns,Y 3)i .

To find the electric field at the point (0, D), we choose a differential element of the
rod, as shown in the diagram. The charge of this element is dg = (Q/L) dx. We find
the field produced by the element, which has both x- and y-components, by

integrating along the rod:



x=L
= 1 dag, N ~
E_47T€of r2( cos 61 +sin 0 ])

=9 /X:Ld—z( cos 01 +sin 0 j).

To perform the integration, we must eliminate variables until we have one, for
which we choose 6. From the diagram we see that r = D/sin §, and x =D cot 6. This

gives
dx=-D csc2 §df=- (D db)/sin2 6.

The limits for fare 1/2 rad to §,=cos™! [L/(D?+ L2)]. When we make these

substitutions, we have
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E(0, D) = IreD |\ Dz 2 1l + ST 7 ]
Because the point (L/2, D) is opposite the midpoint of the rod, we know that the field

there will have only a y-component. Instead of doing another integration, we use

the result from the text (which Prof. Dunning also went over in class):

E(L/ 2, D) = 4n2£D

L/ 2 j" — Q ( 2 )JA
\/DZ L/ 2) 47'[80D '/4D2 + L2



