1. Problem 28-35. (+10 pts)
i. $+3 \mathrm{pts}-$ Correct value for the speed of the particle from kinetic energy.

$$
v=\sqrt{\frac{2 K}{m}}
$$

ii. +6 pts - Correct application of Newton's $2^{\text {nd }}$ law to find B.

$$
\begin{aligned}
& B=\frac{m v}{q r} \\
& B_{\max }=\frac{m}{q R} \sqrt{\frac{2 K_{\max }}{m}}=3.54 T
\end{aligned}
$$

iii. +1 pt - Correct numerical answer above.
$28-35$
Given the kinetic energy, we could find the speed

$$
K=\frac{1}{2} m v^{2} \rightarrow v=\sqrt{\frac{2 K}{m}}
$$

We could find the maximum e Magnetic field requinal to keep maximum mingy particle in intort.

$$
\begin{aligned}
& q B=m r^{2} / r \rightarrow r=\frac{m v}{q B} \rightarrow B=\frac{m v}{q r} \\
& \text { so } B_{\text {max }}=\frac{m N_{\text {max }}}{q R}=\frac{m}{q R} \sqrt{\frac{2 k_{\text {max }}}{m}} \\
& B_{\text {max }}=\frac{1}{q R} \sqrt{2 K_{\text {max }}-m} \\
& \Rightarrow B_{\text {max }}=\frac{\sqrt{2\left(6 \times 10^{4} \mathrm{eV}\right)\left(1.6 \times 10^{2} / \mathrm{l}\right)^{7} \cdot 4\left(1.67 \times 10^{-27} \mathrm{~g}\right)}}{2\left(1.6 \times 10^{-19} \mathrm{C}\right)(0.1 \mathrm{~m})}
\end{aligned}
$$

$B_{\text {max }}=3.54 \mathrm{~T} \quad x$-pastille of. smaller $K E$ require a paler \vec{B} field.

