
Problem Set #9 –Chapter 28 – 34, 41, 48, 49, 50, 63, 79 

 

34. We find the speed acquired from the accelerating potential from 

  v = (2qV/m)1/2. 
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 We combine this with the expression for the radius of the path,  

 R = mv/qB, to get 

  R = (2mV/q)1/2/B. 

 With V, q, and B the same,  
 

  Rx/Rp = 1.4 = (mx/mp)1/2, which gives  mx/mp = 2.0. 

 

41. The force of attraction between the two charges provides the centripetal acceleration: 

  F0 = mRω0
2. 

 A small uniform magnetic field perpendicular to the plane of the orbit, and thus the velocity, 
will add an additional radial force, with a magnitude  

  FM = qvB = qRωB, where ω = ω0 + dω.   

 If the direction is such that this force is toward the center, we have 

  F0 + FM = mRω2; 

  mRω0
2 + qR(ω0 + dω)B = mR(ω0 + dω)2.  

 If we can neglect the B dω term, we get 

  mRω0
2 + qRBω0 = mR(ω0 + dω)2 = mRω0

2 + 2mRω0 dω  + mR (dω)2  

         = mRω0
2 + 2mRω0 dω, 

 which gives  dω = qB/2m. 
 

 

48. The element has length ds = R dθ and makes an angle of θ from the y-axis toward the – x-
axis.  The force on the element is 

  d    
G
F  = I d    

G
s  ×      = IR dθ (– sin θ i  + cos θ  ) × (B    i ),  

G
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ˆ

      d
G
F = −IRB cos(dθ) ˆ k 

 which gives 

  . 



 

49. From     
G
F  =     I

G
L ×

G
B , we see that the force on the wire produced by the magnetic field will be 

down, so the wire will move down.  At the new equilibrium position, the magnetic force will 
be balanced by the increased elastic forces of the springs: 

  FB = Felastic;  
  ILB = 2k ∆y, which gives ∆y = ILB/2k.  

 

50. Because the magnetic field is perpendicular to the wire, the magnetic force 
is horizontal.  If we look along the support axis, we have the three forces 
shown in the diagram.   
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 In the equilibrium condition, the resultant force is 0, so we have 

  tan θ = FM/mg = ILB/mg 

        = (0.55 A)(0.8 m)(0.03 T)/[(0.070 kg)(9.8 m/s2)] = 0.017,  so   

  θ = 1°. 

 

63. (a) For the segment α, we have 

       
G
F α  = I     ×      = I(2R    ) × (– B ) = 

G
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 (b) For the segment β, we choose a differential element d   
G
s  

at an angle θ from the x-axis.  The force on every element will 
be directed toward the center of the arc, along the radius.  By 
pairing elements symmetrically placed from the y-axis, we see 
that the resultant force will be along the – y-axis.  The force on 
the element is 

   d    
G
F β = I d    

G
  ×      = I(– sin θ ds i  + cos θ ds ) × (– B )  s

G
B   

ˆ j   ̂  k 

ˆ j   ̂i 

G

  ̂ 

    = IB ds (– sin θ      – cos θ  ).  

  The resultant force is 

       F β = IB ∫ (– sin θ ds)    . ˆ j 

G

  We could use ds = R dθ and perform the integration over θ.  If we recognize that sin θ ds 
= dx, we can simplify the integral: 

       F β = – IB ∫ dx      = – IB ∆ x   = . ˆ j   ĵ   − 2IRB  ̂  j 

 (c) For the net force, we have 



       
G
F net =     

G
F α +     

G
F β = 2IRB     – 2IRB   = 0. ˆ j   ĵ 

 (d) From the analysis of part (b), which did not use the shape of the wire, we see that the net 
force in a uniform field will be zero for a loop of any shape. 

79. a) The angular momentum of the electrons is 

   L = NmvR perpendicular to the orbit. 

 (b) The period of the orbit is T = 2πR/v. The magnetic dipole moment is 

   μ = IA = (Ne/T)πR2 = [Ne/(2πR/v)]πR2 = 1/2NevR. 

 (c) The ratio is 
   L/μ = NmvR/1/2NevR = 2m/e. 

 

 


