Problem Set \#4 - Chapter 24 - 19, 28, 36, 38, 52, 59, 77, 85
19. (a) The distance from the point in question needs to be determined for both point sources. r_{1} is given. Using $\mathrm{R}=\mathrm{a}=\mathrm{b}$ and $r_{1}=\mathrm{c}$, one can apply the Law of Cosines $\left(c^{2}=a^{2}+b^{2}-2 a b \cos \theta\right)$ to find the angle θ, and therefore, the angle $\left(180^{\circ}-\theta\right)$, and then solve for r_{2}, again using the Law of Cosines. Alternatively, one might recall that the diameter of a circle subtends an angle of 90° at any point on the circle. Thus the distance from the negative charge to the point is

$$
r_{2}=\left[(2 R)^{2}-r_{1}^{2}\right]^{1 / 2}=\left[(50 \mathrm{~cm})^{2}-(30 \mathrm{~cm})^{2}\right]^{1 / 2}=40 \mathrm{~cm} .
$$

The potential at the point is

$$
\begin{aligned}
& V=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{1} / r_{1}+q_{2} / r_{2}\right) \\
&=\left(9 \times 10^{9} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left[\left(24 \times 10^{-8} \mathrm{C}\right) /(0.30 \mathrm{~m})+\left(-10 \times 10^{-8}\right.\right. \\
&0 \mathrm{~m})] \\
&=+5.0 \times 10^{3} \mathrm{~V} .
\end{aligned}
$$

C) $/(0.40 \mathrm{~m})]$

(b) The work required is

$$
W=q \Delta V=\left(-0.2 \times 10^{-6} \mathrm{C}\right)\left(5.0 \times 10^{3} \mathrm{~V}-0\right)=-1.0 \times 10^{-3} \mathrm{~J} .
$$

The negative value indicates that the negative charge wants to "fall" to the higher potential.
28. We need to find the potential energy stored in the charge Q distributed uniformly over the spherical shell. We do this by successively bringing a differential charge in from infinity. The total potential energy is the sum (integral) of the differential work done. As we bring in a differential charge, the charge q already on the shell appears to be a point charge, so the work required to bring in the next differential charge is

$$
\mathrm{d} W=\left(1 / 4 \pi \varepsilon_{0}\right)(q / r) \mathrm{d} q .
$$

The potential energy is the total work required:

$$
U_{1}=W_{1}=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{Q} \frac{q}{R} \mathrm{~d} q=\frac{1}{2}\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{R}\right)
$$

For a shell with half the radius, we have

$$
U_{2}=1 / 2 Q^{2} / 4 \pi \varepsilon_{0}(R / 2)=2 U_{1} .
$$

The work required to move the charges is

$$
W=\Delta U=2 U_{1}-U_{1}=U_{1}=1 / 2 Q^{2 / 4 \pi \varepsilon_{0} R .}
$$

36.

38.

52. The potential at the origin from a differential element of the charge is

$$
\mathrm{d} V=\left(1 / 4 \pi \varepsilon_{0}\right)(\mathrm{d} q / R)
$$

To find the potential at the origin, we add (integrate) the contributions from all elements:

$$
\begin{aligned}
V & =\int\left(1 / 4 \pi \varepsilon_{0}\right)(\mathrm{d} q / R) \\
& =\left(1 / 4 \pi \varepsilon_{0} R\right) \int \mathrm{d} q=q / 4 \pi \varepsilon_{0} R=\lambda \pi R / 4 \pi \varepsilon_{0} R \\
& =\lambda / 4 \varepsilon_{0} .
\end{aligned}
$$

59. As discussed in class and in the book, before the two spheres are connected together, their potentials will depend on the amount of deposited charge and their spherical radius:

$$
\begin{aligned}
& V_{2}=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{2} / r_{2}\right) \\
& V_{1}=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{1} / r_{1}\right)
\end{aligned}
$$

After connection, the two spheres must have the same potential:

$$
V=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{1}^{\prime} / r_{1}\right)=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{2}^{\prime} / r_{2}\right), \text { or } \quad q_{1}^{\prime}=\left(r_{1} / r_{2}\right) q_{2}^{\prime} .
$$

Because charge is conserved we have

$$
q_{1}+q_{2}=q_{1}^{\prime}+q_{2}^{\prime} .
$$

When we combine these two equations, we get

$$
q_{2}^{\prime}=\left(q_{1}+q_{2}\right)\left[r_{2} /\left(r_{1}+r_{2}\right)\right] .
$$

The amount of charge that moves between the two spheres is

$$
\Delta q_{2}=q_{2}^{\prime}-q_{2}=\left(q_{1} r_{2}-q_{2} r_{1}\right) /\left(r_{1}+r_{2}\right) .
$$

77. Because the electric field is purely radial (from symmetry considerations), we will chose a radial path from ∞ to a radial position r within the sphere and set $V=0$ at $r=\infty$. Using Gauss' Law, we can derive the electric fields in the different regions as:

$$
\begin{aligned}
\vec{E} & =\frac{Q}{4 \pi \varepsilon_{0} r^{2}}, \\
\vec{E} & r \geq R \\
4 \pi \varepsilon_{0} R^{3} & \quad r<R
\end{aligned}
$$

For r inside the sphere, we have

$$
\begin{aligned}
V(r) & =-\int_{\infty}^{R} E_{\text {outside }} d r-\int_{R}^{r} E_{\text {inside }} d r \\
& =-\int_{\infty}^{R} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r-\int_{R}^{r} \frac{Q r}{4 \pi \varepsilon_{0} R^{3}} d r \\
& =-\frac{Q}{4 \pi \varepsilon_{0}} \int_{\infty}^{R} \frac{1}{r^{2}} d r-\frac{Q}{4 \pi \varepsilon_{0} R^{3}} \int_{R}^{r} r d r \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R}\right)+\frac{Q}{8 \pi \varepsilon_{0} R}\left(1-\frac{r^{2}}{R^{2}}\right) \\
& =\frac{Q}{8 \pi \varepsilon_{0} R^{3}}\left(3-\frac{r^{2}}{R^{2}}\right)
\end{aligned}
$$

The potential energy of a charge $-q$ is

$$
U=-q V=-\left(q Q / 8 \pi \varepsilon_{0} R\right)\left(3-r^{2} / R^{2}\right)
$$

The variable part of the potential energy has the form of the elastic potential energy of a spring:

$$
U=1 / 2 k r^{2}
$$

so the motion can be an oscillation, like the mass on a spring.
Comparing the coefficients, we have

$$
k=q Q / 4 \pi \varepsilon_{0} R^{3} .
$$

85. Assume that $r_{1}<r_{2}$. Place the origin of the coordinate system at the center of both shells. For $r>r_{2}$ the electric field is identical to that of a point charge, $Q=q_{1}+q_{2}$, at the origin. So

$$
V=\left(1 / 4 \pi \varepsilon_{0}\right) Q / r=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{1}+q_{2}\right) / r \quad\left(r_{2}<r\right) .
$$

Between r_{1} and r_{2}, the E-field produced by q_{2} is zero, so the potential due to q_{2} remains the same as its value at r_{2}, i.e., $\left(1 / 4 \pi \varepsilon_{0}\right) q_{2} / r_{2}$. For q_{1}, the E-field is still equivalent to that of a point charge q_{1} at the origin, so the contribution to V due to q_{1} is $\left(1 / 4 \pi \varepsilon_{0}\right) q_{1} / r$. Add both contributions up to obtain

$$
V=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{2} / r_{2}+q_{1} / r\right) \quad\left(r_{1}<r<r_{2}\right) .
$$

Once $r<r_{1}$, there is no electric field, so the potential no longer changes once it reaches its value at r_{1}. Thus

$$
V=\left(1 / 4 \pi \varepsilon_{0}\right)\left(q_{1} / r_{1}+q_{2} / r_{2}\right) \quad\left(r<r_{1}\right) .
$$

