1. Problem 30-24. (+6 pts)
I. +2 pts - correct expression for the potential difference between the rim and the center of the disc.

$$
\Delta V=-\int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}
$$

II. +3 pts - correct electric field
i. +2 pts - for forces acting on charges (Students must include the centripetal acceleration. If they omit the resultant force then they receive $0 / 3 \mathrm{pts}$ for this section.)

$$
q \overrightarrow{\mathbf{E}}+q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}=-\frac{m_{q} v^{2} \hat{r}}{r}
$$

ii. +1 pts - correct expression for the magnitude of the electric field.

$$
E=q v B+\frac{m_{q} v^{2}}{r} \quad(\text { with } v=\omega r)
$$

III. +1 pt - correct answer for $|\Delta V|\left(\mid \Delta V=9.2 \times 10^{-3} V\right)$.
2. Problem 32-7. (+4 pts)
(a) +2 pts
i. +1 pt for finding the contribution of flux due to the 2 A circuit ($\Phi_{1,2}$ - in my notation.)
ii. +1 pt for calculating the mutual inductance correctly

$$
\Phi_{1,2}=M_{2,1} I_{2 A} \rightarrow M_{2,1}=1 \times 10^{-3} H
$$

(b) +2 pts
i. +1 pt for summing the total flux contributions (self + mutual inductance)

$$
\Phi_{2}=M_{2,1} I_{1}+L I_{2}
$$

ii. +1 pt for correct flux through 2 A circuit ($\Phi_{2}=3 \times 10^{-3} \mathrm{Tm}^{2}$)

30-24

Nentral dise $\left(n_{1} q=n_{-q}\right)$
iq will fuel a Magnatic fone: $\vec{F}=q \vec{V} \times \vec{B} \rightarrow$ tavande centio of $d \times$. -q ful a May. fore \rightarrow avag fum conter of dise.
liac

EBD:
electims are accelerating!!

$$
\begin{gathered}
\Rightarrow E=\frac{e v B+\frac{m_{e} V^{2}}{e R}=\frac{d \omega}{e} \omega R B+\frac{m_{e} \omega^{2} R}{e} \text { Q the edgel }}{E(r)=\omega r B+\frac{m_{e} \omega^{2} r}{|e|} r\left(\omega B+\frac{m_{e} \omega^{2}}{|e|}\right)} \\
\Rightarrow \Delta V(R, P)=-\int \vec{E} \cdot d \vec{l}=-\int_{R}^{0} r\left(\omega B+\frac{m_{e} \omega^{2}}{|e|}\right) d r=\frac{1}{2} \omega B R^{2}+\frac{1}{2} \frac{m_{e} \omega^{2} R^{2}}{l e \mid} \\
\Delta V\left(R_{0}\right)=9.2 \times 10^{-3} V+7.85 \times 10^{-11} V \simeq 9.2 \times 10^{-3} \mathrm{~V}
\end{gathered}
$$

$$
\Phi_{B_{0}}=0.010 \mathrm{~T} \cdot \mathrm{~m}^{2} \quad \text { "isolation" }
$$

$$
\begin{aligned}
& \Phi_{B_{1}}=\Phi_{B_{0}}+\Phi_{2,1}=0.012 \mathrm{~T} \cdot \mathrm{~m}^{2} \\
\Rightarrow & \Phi_{2,1}=0.002 \mathrm{~T} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

thm 1 fin $2 A$
(a) $\frac{\Phi_{2,1}}{\Phi_{2,1}} M_{2 A} \Rightarrow M_{2,1}=M_{1,2}=\frac{\Phi_{2,1}}{2 M_{2,1}}=\frac{2 \times 10^{-3}}{2} \mathrm{H}=\frac{1 \times 10^{-3} \mathrm{H}}{H}$
(b)

$$
\begin{aligned}
& \Phi_{2}=M_{2,1} I_{1}+L I_{2}=\left(1 \times 10^{-3} \mathrm{H}\right)(1 \mathrm{~A})+\left(1.0 \times 10^{-3}\right) 2 \mathrm{~A}=3 \times 10^{-3} \mathrm{~T} \cdot \mathrm{~m}^{2} \\
& \Phi_{2}=3 \times 10^{-3} \mathrm{~T} \cdot \mathrm{~m}^{2} \quad \text { with } L=1 \times 10^{-3} \mathrm{H}
\end{aligned}
$$

