1. Problem 29-49. (+10 pts)
I. +3 pts - correct expression for the magnetic field generated by one semicircle at the center of the semicircle (P).

$$
B(P)=\left(\frac{1}{2}\right) \frac{\mu_{0} I}{2 R} \quad \text { (factor of } \frac{1}{2} \text { due to semicircle) }
$$

II. $+4 \mathrm{pts}-$ correct directions for the magnetic field due to the top wire and the bottom wire - Biot-Savart.
i. +2 pts - B due to the smaller radius wire is directed into the page.
ii. +2 pts - B due to the larger radius wire is directed out of the page.
III. +2 pts - correctly subtracting out the magnitude of the magnetic field at the center of the semi-circles.
IV. $+1 \mathrm{pt}-$ correct answer.

$$
\overrightarrow{\mathbf{B}}(P)=2.8 \times 10^{-5} T \quad \text { (into the page) }
$$

$29-49$

$$
\begin{aligned}
& r_{1}=5 \mathrm{im}=5 \times 10^{-2} \mathrm{~m} \\
& r_{2}=8 \mathrm{~cm}=8 \times 10^{-2} \mathrm{~m} \\
& I=12 \mathrm{~A} .
\end{aligned}
$$

We ebtainad $B(P)$ for a fuel crele caroyrg cumentfurm ilun

$$
B(\gamma)=\frac{\mu_{0} 1}{2 R} \text { if wee oly have } \frac{1}{2} \text { a crocle }
$$

thine $B(P)=\frac{1}{2} \frac{\mu_{0} I}{2 R}=\frac{\mu_{0} I}{4 R}$
We mued to puperpose the magaitiz fielile due to both dimicioveles.
Tunce simicirile produces $B_{F_{1}}(p)$ into page
Clitio remicicice proticial $B_{r_{2}}(p)$ out of prage.

$$
\begin{gathered}
\left.\left|B_{r_{1}}(p)\right|\right\rangle\left|B_{r_{2}}(p)\right| \\
B_{T}(p)=B_{r_{1}}(p)-B_{r_{2}}(p)=\frac{\mu_{0} I}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
\vec{B}_{T}(p)=2,8 \times 10^{-5} T \text { int the page. }
\end{gathered}
$$

