Physics 102 Spring 2007: Suggested Problems \# 6

1. Problem 27-64. (+5 pts)
a. +3 pts - Correct value for the current after applying Kirchhoff's rules for circuits.

$$
I=0.3 A
$$

b. $+1 \mathrm{pt}-$ Correct power through the battery.

$$
P_{V}=V I=1.8 W
$$

c. $+1 \mathrm{pt}-$ Correct power through the resistor.

$$
P_{R}=V I=I^{2} R=1.8 W
$$

2. Problem 27-80 (+5 pts)
a. $+5 \mathrm{pts}-$ Correct answer for the charge on the plates with correct sign $\left(Q_{C}=5 \mu C\right.$ with top plate positive).
b. +5 pts - Correct answer for the current through the $35-\Omega$ resistor $\left(I_{35 \Omega}=0.1 A\right)$.
$27-64$

$$
\begin{aligned}
\Delta V & =0=-20 I-6 V+12 V=-20 I+6 V \\
& \Rightarrow I=\frac{6}{20} \text { Anp }
\end{aligned}
$$

(a) $\quad I=\frac{3}{10}$ Amp
(b) Powir through battery (6 V)

$$
P_{6 v}=V_{6 V} I=(6 V)\left(\frac{3}{10} A\right)=\frac{18}{10} W=\frac{1.8 \mathrm{~W}}{\Rightarrow}
$$

(c) Power turough resiotor.

$$
\begin{aligned}
& P_{20 \Omega}=V_{20 \Omega} I_{20 \Omega}=I_{2002}^{2}(20 \Omega)=\left(\frac{9 A^{\circ}}{100}\right)(20 \Omega) \\
& P_{20 \Omega}=\frac{9}{5} W=\frac{18}{10} W=1.8 \mathrm{~W}
\end{aligned}
$$

Pite: $P_{12 v}=(12 v)(3 / 10 A)=\frac{36}{10} w=3.6 \mathrm{~W}$
so $\quad P_{12 v}=P_{6 v}+P_{20 \Omega}$

$$
27-80
$$

After a very long time the capacitor is fully charged so no current "flows" then capacitor.

$$
\begin{aligned}
& \Rightarrow \underbrace{R_{\text {eff }}}_{\frac{1}{2}} \frac{1}{R_{\text {eff }}}=\frac{1}{60}+\frac{1}{240}=\frac{5}{240 \Omega} \Rightarrow \frac{240}{5} \Omega=R_{\text {eff }} \\
& \Rightarrow I_{\text {eff }}=48 \Omega \\
& 48 \Omega \\
& \Rightarrow \frac{1}{8} \mathrm{~A}
\end{aligned}
$$

$27-80$
A cument of $\frac{6 \mathrm{~V}}{240 \Omega}=0.025 \mathrm{~A}$ through 240Ω (effective recist)

A cumust of $\frac{6 V}{60 \Omega}=\frac{1}{10} A=0.1 A$ though 60Ω (uffecine neustor),

$$
\begin{aligned}
& I_{1}=I_{2}+I_{3}=0.125 \mathrm{~A} \mathrm{~J} \\
& I_{2}=0.025 \mathrm{~A} \quad \xi \quad I_{3}=0.1 \mathrm{~A}
\end{aligned}
$$

Applying kirchhoffis Rule to loop lobedod (1)

$$
\Delta V_{d d}=0=I_{3}(25 \Omega)+V_{c}-I_{2}(60 \Omega)-
$$

6 V

I have assumed top plate of capacitor is \leftrightarrow w.V.Y. bittom plate!! so $V_{b}<V_{e}$ (in my assumption).

$$
\begin{aligned}
\Rightarrow V_{c} & =60 I_{2}-25 I_{3}=60(0.025 \mathrm{~A})-25(0.1 \mathrm{~A}) \\
V_{c} & =1.5 \mathrm{~V}-2.5 \mathrm{~V}=-1 \mathrm{~V}
\end{aligned}
$$

$\Rightarrow V_{b}>V_{e}$ So my assumption was incomex!

$$
\left.V_{b}-V_{e}=+I V\right) \Rightarrow \text { Top plate is (t). }
$$

(a) $Q=(1 V)(5 \mu F)=5 \mu C$
(b) Curront thrugh 35Ω nesistor is $I_{3}=0.1 \mathrm{~A}$

