1. Problem 24-52. (+10 pts)

Statement of problem:
Charges are distributed with uniform charge density λ along a semicircle of radius R, centered at the origin of a coordinate system. What is the potential at the origin?
(a) +3 pts - correct set up for $d V$.

$$
\begin{aligned}
& d V=\frac{k d q}{r} \\
& \Delta V=k \int \frac{d q}{r}
\end{aligned}
$$

(b) $+5 \mathrm{pts}-$ completing the integral.
i. $+2 \mathrm{pts} r$ is constant $(r=R)$ with respect to the integration.
ii. +3 pts - correct answer for ΔV :

$$
\Delta V=\frac{k Q}{R}
$$

(c) +2 pts - correct answer in terms of λ.

$$
\Delta V=\frac{\lambda}{4 \varepsilon_{0}}
$$

$24-52$

$$
\lambda \equiv Q / L=\frac{Q}{\pi R} \rightarrow Q=\lambda \pi R
$$

We know $d V=k d q / r \Rightarrow \Delta v=k \int d q / r$
r is equidestant furm all ponts on the pomicircle $(r \equiv R)$ so $\quad \Delta v=\frac{k}{R} \int d q=\frac{k Q}{R}$

$$
\Delta V=\frac{k \lambda \pi R}{k}=k \lambda \pi=\frac{\lambda}{4 \varepsilon_{0}}
$$

$\Rightarrow \Delta V=\frac{\lambda}{4 \varepsilon_{0}}$ with $V \rightarrow 0$ an $r \rightarrow \infty$

$$
V=\frac{\lambda}{4 \varepsilon_{0}}
$$

