Physics 102– Pledged Problem 9

Time allowed: 2 hours at a single sitting

Due 5PM Monday, April 16, 2007, in the boxes marked Phys 101-102 in the physics lounge. You may use your own textbook, your notes, and a non-programmed calculator. You may also consult the on-line solutions to the corresponding suggested problems. You should consult no other help. Show how you arrived at your answer; the correct answer by itself may not be sufficient. Further instructions:

- (a) Write legibly on one side of 8.5" x 11" white or lightly tinted paper.
- (b) Staple all sheets together, including this one, in the upper left corner. Make one vertical fold.
- (c) On the outside, print your name in capital letters, your LAST NAME followed by your FIRST NAME.
- (d) Below your name, print the phrase "Pledged Problem 9", followed by the due date.
- (e) Write and sign the pledge, with the understanding that you may consult the materials noted above.
- (f) Indicate your start time and end time.
- I. A conducting rod of mass m and negligible resistance slides without friction along two parallel rails, also of negligible resistance. The rails are separated by a distance l and connected together through a resistor R. The rails rest on a long inclined plane that makes and angle θ to the horizontal. There is a uniform magnetic field B directed vertically upward as shown in the figure below. The rod is released from rest and slides down the incline. Express your answers in terms of B, l, R, θ , m, and possibly other constants.
- (a) When the rod has velocity v_x down the incline, determine the current induced in the circuit by the changing magnetic flux. Show that this current produces a retarding force up the incline and find the magnitude of that force.
- (b) Show that there is a terminal speed v_t such that the gravitational force down the incline is balanced by the upward retarding force. Determine the value of v_t .
- (c) When the rod has reached the terminal velocity v_t , what is the I^2R power dissipation in the resistor? Compare the power dissipated in the resistor to the change in gravitational potential energy of the rod.

- II. In the circuit shown below, the switch is initially opened, then at t=0 it is closed.
- (a) Determine the currents I_1 , I_2 , and I_3 and the potential drop across the inductor \mathcal{E}_L at t=0.
- (b) Determine the currents I_1 , I_2 , and I_3 and \mathcal{E}_L at $t \to \infty$.

After the switch has been closed for a long time, it is opened.

- (c) Determine the three currents immediately after the switch is opened
- (d) Determine the three currents a long time after the switch is opened.
- (e) Determine the I(t), the current in the inductor L as a function of time, after the switch is opened.
- (f) If L=1H, and $R_1=R_2=R$, what value of R is needed so that the time constant for discharging is 30s?

Phipida - Pledged Problem 9

I what we to the flux $\phi_{B} = \int \vec{B} \cdot d\vec{S} = B \cos \theta \text{ (area)}$

where area = 2 x

To determine the induced enjin the rod-rail loop, we need des

de = de (Buselx) = Buselv,

where is the velocity down the incline.

So E = BlandNx = IR

I = Bluson

The direction will be so as to oppose the change in flux, so I will be clockwise as viewed from above, or out of the page, giving a FF Tout of page force to the left

F = IlB (-i) - to the left.

We need the component of this force up the incline

$$F_{up} = B^2 l^2 co^2 0 N_x$$
R

- he tanding force up uncline

(b) As the rod's speed down the incline increases, the retarding force up the incline increases until Fup balances the gravitational force down.

$$\frac{B^2l^2 \cos^2\theta N_E}{R} = mg \sin \theta$$

$$N_{z} = \frac{R Mg sin \Theta}{B^{2} l^{2} co^{2} \Theta}$$

(C) At N_t, the power dissipated in the resistor is $P = I^{2}R = RB^{2}l^{2}as^{2}o\left(\frac{Rmgsino}{B^{2}l^{2}as^{2}o}\right)^{2}$ $R^{2}l^{2}as^{2}o\left(\frac{Rmgsino}{B^{2}l^{2}as^{2}o}\right)^{2}$

Now determine the rate of change of the radio gravitational PE

PE = mgh

= mg × sin 0

d(PE) = mg sin 0 N_t (dx = N_t)

d(PE) = mg sin 0 (R mg sin 0)

d(PE) = mg sin 0 (R mg sin 0)

 $\frac{d}{dt}(PE) = \frac{R(mgsin\theta)^2}{B^2l^2\omega^2\theta} = Power dissipated in R$

(a) Amnedeately after Sis closed, there is no current through L, since the current in an inductor carrot charge abruptly. R. &R, are in series

$$\left[\begin{array}{ccc} T_3 = 0 & T_1 = T_2 & = \frac{\varepsilon_0}{R_1 + R_0} \end{array}\right]$$

$$\mathcal{E}_{L} = \mathcal{I}_{2} \mathcal{R}_{2} = \frac{\mathcal{E}_{1} \mathcal{R}_{2}}{\mathcal{R}_{1} + \mathcal{R}_{2}}$$

(b) for t > 00, the current in L is established, and the resistance of L is regligible

$$T_2 = 0 \qquad T_1 = T_3 = \frac{\mathcal{E}_0}{\mathcal{R}_1}$$

(C) Immediately after switch opened, R, is out of the circuit, I,=O. The current through L can't charge abruptly, so

$$I_1 = 0$$
 $I_2 = I_3 = \frac{\mathcal{E}_0}{\mathcal{R}_1}$

(d) At t > 20, all currents have decayed away $\begin{bmatrix}
I_1 = I_3 = I_3 = 0
\end{bmatrix}$

U) The current decorposith characteristic time constant T = L/R where in this case $R = R_2$.

$$(6) L = 1H$$

$$T = \frac{L}{R} = \frac{30 \text{ ser}}{30 \text{ ser}}$$

$$R = \frac{L}{30 \text{ ser}} = \frac{1}{30}$$

$$R = 0.03 \Omega$$

Checkrenits: L has units of flux = B.A. I

$$[L] = \frac{N\Delta}{cm} \cdot \frac{m^2 \Delta}{c} = \frac{J\Delta^2}{c^2}$$

$$\left(\mathcal{L}\right) = \frac{L}{\Gamma} = \frac{C_2 \circ \circ}{2^{\circ}} \sim \frac{C_2}{2^{\circ}} = 2^{\circ} \sim$$