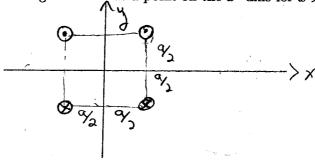
Physics 102-Pledged Problem 9

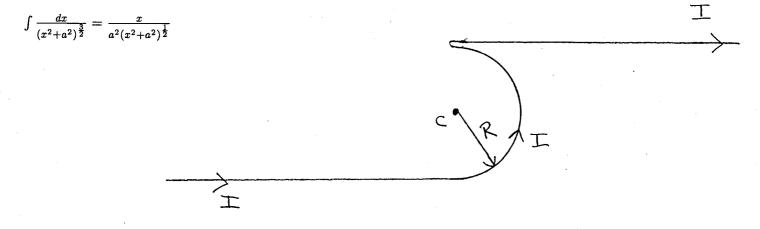
Time allowed: 2 hours at a single sitting


Due 5PM Monday, April 3, 2006, in the boxes marked Phys 101-102 in the physics lounge. You may use your own textbook, your notes, and a non-programmed calculator. You may also consult the on-line solutions to the corresponding suggested problems. You should consult no other help. Show how you arrived at your answer; the correct answer by itself may not be sufficient.

Further instructions:

- (a) Write legibly on one side of 8.5" x 11" white or lightly tinted paper.
- (b) Staple all sheets together, including this one, in the upper left corner and make one vertical fold.
- (c) On the outside, staple side up, print your name in capital letters, your LAST NAME first followed by your FIRST NAME.
- (d) Below your name, print the phrase "Pledged Problem 9", followed by the due date.
- (e) Also indicate start time and end time.
- (f) Write and sign the pledge, with the understanding that you may consult the materials noted above.

I. Four long, parallel, straight wires pass through the corners of a square whose side has length a. Take the center of the square to be the origin, with the x and y axes as shown. The top two wires carry current I out of the page, and the bottom two wires carry current I into the page.


- (a) Determine the magnetic field \vec{B} at the location of the top left wire due to the other three wires.
- (b) Determine the force per unit length on the top left wire due to the other three wires.
- (c) Determine the magnetic field \vec{B} at the center of square.
- (d) Determine the direction of the magnetic field at a point on the x-axis for x > a.

II. A very long wire carrying current I is bent to form a semicircle of radius R as shown below. After the semicircle is formed, the wire makes a sharp bend and continues to the right. The point C is at the center of the semicircle.

- (a) Determine the magnetic field at the point C due to the curved (semicircular) part of the wire.
- (b) Determine the magnetic field at C due to the long straight section of wire to the left of the semicircle.
- (c) Determine the magnetic field at C cue to the long straight section of wire to the right of the semicircle.
- (d) Compare your results in (b) and (c) to the magnetic field due to a single infinitely long wire.

You may find the following indefinite integral useful:

Physio2 Pledged Problem 9

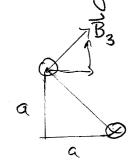
I.
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

(a) find Bat He location of the top left wire. Consider each wire separately!

B, (due to wire labeled () above)

B. O

from Ampere's law.

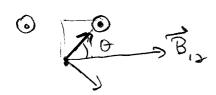

इं. म = मर्

2TAB = MOI

B1= MI for 10 8 Q N= a

 $\vec{B}_1 = \frac{\mu_0 \pm}{2\pi a} (\hat{x}) \vec{B}_3 = \frac{\mu_0 \pm}{2\pi a} (\hat{x})$

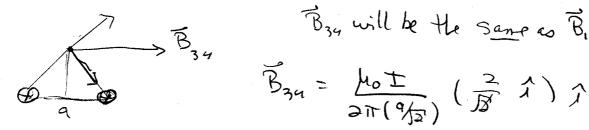
for the third wire, we need to be careful of the angles:



$$\frac{1}{B_3} = \frac{M_0 \pm}{25 \pi a} \left(\frac{1}{15} \hat{\lambda} + \frac{1}{15} \hat{1} \right)$$

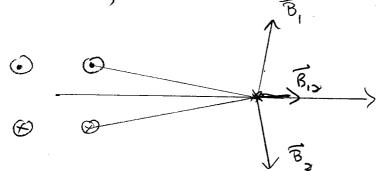
$$F = IL \left[\frac{Mot}{2\pi a} \left(\frac{3}{2} \frac{1}{k} \chi_{\Lambda}^{\Lambda} \right) - \frac{1}{3} \left(\frac{1}{4} \chi_{\Lambda}^{\Lambda} \right) \right]$$

$$\frac{F}{L} = \frac{MoT^{2}}{2\pi a} \left[\frac{1}{4} \Lambda + \frac{3}{4} \frac{3}{3} \right]$$


(C) B at the center of the Aquare - use the symmetry to simplify.

tist unsidenthe top two wires. He ret field is in the +x direction, since the vertical components cancel.

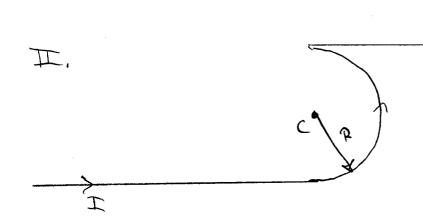
$$\overline{B}_{12} = \frac{\mu_0 \pm}{2\pi (95)} (2 \cos 0) \hat{\lambda}$$


Similarily for the lower two wires:

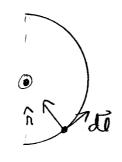
By will be the same as Bis!

$$\vec{B}_{\text{TOT}} = \vec{B}_{13} + \vec{B}_{34} = 2 \mu_0 \vec{I}$$

(d) beterning the direction of the magnetic field on the $X \sim xis, X > q$



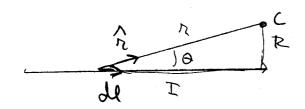
first unside the two were closest to ?


Vertical components cancel, horizontal Components add.
Bis ion +x direction

Some arguements apply to the other two wies

=> B onx-axis is in the +x direction

(a) Determine Bat c due to semicular part of wir. Use Biot-Sovert Law



Direction of de xi is up out of Page. 12-> R2, same for all current elements de

(due to soniciale)

$$\frac{\vec{B}}{(\text{senic.})} = \frac{\mu_0 T}{4R} \vec{J}_r \quad (\text{up out } f_r \text{Page})$$

(b) Now determine Blue to the left straight section

Again, from the Biot - Savart law,

We reed to integrate from x = - so to 0

$$B = \underbrace{\frac{\mu_0 \pm R}{4\pi}} \underbrace{\underbrace{\frac{\lambda_0 \pm R}{(x^2 + R^2)^3}}_{2} = \underbrace{\frac{\mu_0 \pm R}{4\pi}} \underbrace{\frac{\lambda_0}{R^2(x^2 + R^2)}}_{2} \underbrace{\frac{\lambda_0}{R^2}}_{2}$$

JIXÃ = dl sino

sin 0 = R

V= 1x3+ B7

Note:
$$\lim_{x \to -\infty} \frac{x}{(x^2 + e^2)^2} = \lim_{x \to -\infty} \frac{x}{(x)} = -1$$

- equal to 5 your infinite wio!

Ir (upward)

de >dx

Alternative way to do the integral - charge to an integral over anglas!

$$B = \frac{100T}{417R} \int_{0}^{\pi/2} \sin \theta d\theta$$

$$B = \frac{1}{4\pi R} - 400$$

$$tano = \frac{R}{x}$$

$$dx = R\left(\frac{-\sin\theta}{\sin\theta} - \frac{\cos\theta}{\sin^2\theta}\right)d\theta$$

$$= -R\left(\frac{\sin\theta + \cos\theta}{\sin^2\theta}\right) - \frac{R}{\sin^2\theta}d\theta$$

$$dx = \frac{Rd\theta}{\sin^2\theta}$$

(C) Determine B due to the right straight sledion!

(direction is down).

$$sin(\emptyset) = sin(T - 0) = sin T CDO - CDT sin O = + sin O$$

$$\Delta i \hat{\theta} = \frac{R}{(x^2 + R^2)^2}$$

Some as in (b)

$$B = \frac{10 \pm R}{417} \int_{0}^{\infty} \frac{dx}{(x^{2}+R^{2})^{3}}$$

Direction is down, into peop

Note that the contributions from the two long straight sections cancel!

(d) A single long wire has field