
RLC Circuits 
 

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you 

are. If it doesn’t agree with experiment, it’s wrong. 

 Richard Feynman (1918-1988) 

 

OBJECTIVES 

 To observe free and driven oscillations of an RLC circuit. 

 

THEORY 

 The circuit of interest is shown in Fig. 1, including sine-wave sources. We start with the 

series connection, writing Kirchoff's law for the loop in terms of the charge qC on the capacitor 

and the current i = dqC/dt in the loop. The sum of the voltages around the loop must be zero, so 

we obtain  
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For reasons that will become clear shortly, we rewrite this as 
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with ! = 2L/R and !
0

2
= 1 / LC . Two situations will be of interest. We will examine the free 

oscillations, when vD is exactly zero, meaning that the sine-wave generator has been replaced 

with a short circuit. We will then connect the sine wave generator and calculate the response as a 

function of frequency. 
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Fig. 1 Idealized series RLC circuit driven by a sine-wave voltage source. 
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 If the resistance in the circuit is small, the free oscillations are of the form 
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Where qC0 and ! are determined by initial conditions, and  
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This solution is plotted in Fig. 2 for a case where the capacitor is initially charged and no current 

is flowing. (For a mass on a spring the equivalent situation would be to pull the mass aside and 

release it from rest.) Evidently there are oscillations at "1, approximately equal to "0, within an 

exponential envelope. Note that the amplitude falls to 1/e of the initial value when t =#. 

 As # gets smaller (larger resistance R), "1 becomes smaller and finally imaginary. The 

corresponding solutions do not oscillate at all. For "0 < 1/#, there are two exponentials 
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where #1 and #2 differ somewhat from #. When "0 = 1/# the solution is slightly simpler: 
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If the capacitor is initially charged, these results tell us we will get a monotonic decay for 

sufficiently large R. The case "0 = 1/# is referred to as "critical damping" because the charge 

reaches zero in the shortest time without changing polarity.  
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Fig. 2 Damped oscillation, showing decay envelope 
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 The solution for sine-wave driving describes a steady oscillation at the frequency of the 

driving voltage: 

 

 qC = Asin(!t + " )  (8) 

 

We can find A and ! by substituting into the differential equation and solving: 
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These two equations are plotted in Fig. 3, where we use the fact that vC = qC/C to plot the voltage 

across the capacitor relative to the driving voltage. (Our apparatus does not allow us to observe 

the phase of the response, so we won't consider that further.) 

 The angular frequency for maximum amplitude is given by 
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At the maximum, the oscillation amplitude is considerably greater than the driving amplitude. In 

fact, if " were infinite (no damping), the response would be infinite at #0. 

 Since the shape of the peak in vC characterizes the resonance, it is convenient to have 

some parameter to specify the sharpness of the peak. Traditionally, this is taken to be the full 

width !#, shown in Fig. 3, at which the voltage or current have fallen to 1/ 2  of their peak 
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Fig. 3 Amplitude and phase of capacitor voltage as a function of frequency. 
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value. The reason for this choice is that the power dissipation is proportional to i2, so these 

frequencies correspond to the points at which the power dissipation is half of the maximum. 

Using Eq. 9 we find that the width is related to ! by 

 

 !" =
2

#
 (12) 

 

demonstrating the intimate relation between time and frequency response parameters. In 

obtaining this result, we assumed "0! » 1, so that " ! "0 at the peak. 

 

EXPERIMENTAL PROCEDURE 

 The RLC circuit is assembled from a large solenoid, a capacitor on the circuit board, and 

an additional variable resistance to change the damping. The circuit can be charged up with a DC 

power supply to study the free oscillations, or driven with a sine wave source for forced 

oscillations.  

 

Free oscillations 

 To study the homogeneous solution we will use LoggerPro to record the voltage across the 

capacitor as a function of time. The required circuit is shown in Fig. 4. Since the coil is not made 

with superconducting wire, we account for the wire resistance with RL. The variable resistor, 

shown by a resistor symbol with an arrow in the middle, should be set to minimum resistance 

initially. (You can check with the DMM in ohmmeter mode, before connecting R into the 

circuit.) The power supply can be set to maximum output.  

 Start LoggerPro with the file RLC.cmbl. This will configure the program to collect data at 

10,000 samples per second, triggered when the voltage decreases across 9.5 V. Set the switch to 

position b to charge the capacitor, and then start data acquisition. Flipping the switch to position 
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Fig. 4  Circuit for measuring free oscillations in an RLC circuit. 
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a will start the discharge, and should result in a plot resembling Fig. 2. There may be some 

irregularity at the beginning, due to bouncing when the switch first makes contact, but you can 

ignore that in your analysis. 

 When you have a reasonable looking plot, select the portion of the data after any effects 

of switch bounce, and fit it to a damped sine wave. You should be able to obtain estimates of the 

time constant ! and the angular frequency " for your circuit. (Delete the fit or restart RLC.cmbl 

before taking more data. Otherwise you will have to wait while the program tries to fit the new 

data.) 

 Now increase the variable resistor R slightly and obtain another voltage vs time plot. 

Describe what happens to the time constant and to the shape of the curve as R becomes 

progressively larger.  

 Critical damping occurs when R is just big enough that the voltage no longer crosses zero 

during the decay. Try to find this setting, and measure the value of the variable resistor using a 

DMM. The exact value is not very clear, but make a reasonable attempt. Reminder: You must 

disconnect R from the circuit to get an accurate measurement with the DMM. 

 

Driven oscillations 

 To study the driven solution we need to provide a sine-wave signal source, as shown in 

Fig. 5. Our source is equivalent to an ideal sine-wave generator in series with a 50 ! resistor, 

labeled Rg in the diagram. Since Rg is large enough to affect the damping of the circuit, we add 

the 3.3 ! resistor in parallel to reduce the effective resistance of the generator. The other change 

from Fig. 4 is to replace the LabPro with a DMM, set to read AC voltage. (The DMM can read 

AC voltages between about 30 Hz and 1000 Hz. It is unreliable outside of that range.) 

 Connect the circuit as shown in Fig 5, and then vary the driving frequency to find the 

frequency at which vC is maximum. This identifies the resonance frequency, in Hertz. Next, you 

should plot vC as a function of frequency, taking care to get enough data around the resonance 

frequency to clearly define the curve. This goes very quickly if you enter f and vC directly into 
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Fig. 5  Circuit for measuring driven oscillations in an RLC circuit. 

 



 RLC Circuits 6 

Graph.cmbl and then pick data points to trace the regions of interest. Does your plot look like Fig. 

3?  

 You can get an accurate measure of the width by finding the frequencies just above and 

just below the resonance at which vC is reduced by 1/ 2  from the peak value. The width !! is 

then 2"!f, where the 2" converts from frequency in Hertz to angular frequency. Do your 

measured values of !! and # satisfy Eq. 12? 


