Clicker Session – Currents, DC Circuits

# Wires

A wire of resistance *R* is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance?

- 1) it decreases by a factor 4
- 2) it decreases by a factor 2
- 3) it stays the same
- 4) it increases by a factor 2
- 5) it increases by a factor 4

# Wires

A wire of resistance *R* is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance?

- 1) it decreases by a factor 4
- 2) it decreases by a factor 2
- 3) it stays the same
- 4) it increases by a factor 2

5) it increases by a factor 4

Keeping the volume (= area x length) constant means that if the length is **doubled**, the area is **halved**. Since  $R = \rho \frac{L}{A}$ , this increases the resistance by four.

### **Series Resistors I**

Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential difference across each resistor? 1) 12 V

2) zero

3) 3 V

4) 4 V

5) you need to know the actual value of *R* 



## **Series Resistors I**

Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential difference across each resistor?

1) 12 V
 2) zero
 3) 3 V
 4) 4 V
 5) you need to know the actual value of *R*

Since the resistors are all equal, the voltage will drop evenly across the 3 resistors, with 1/3 of 9 V across each one. So we get a 3 V drop across each.



**Follow-up:** What would be the potential difference if  $R=1 \Omega, 2 \Omega, 3 \Omega$ 

# **Series Resistors II**

|                                   | 1) 12 V |  |
|-----------------------------------|---------|--|
| In the circuit below, what is the | 2) zero |  |
| voltage across R <sub>1</sub> ?   | 3) 6 V  |  |
|                                   | 4) 8 V  |  |
|                                   | 5) 4 V  |  |



### **Series Resistors II**

In the circuit below, what is the voltage across  $R_1$ ?

1) 12 V
 2) zero
 3) 6 V
 4) 8 V
 5) 4 V

The voltage drop across  $R_1$  has to be twice as big as the drop across  $R_2$ . This means that  $V_1 =$  $V_1 = V_2 = 4 V$ . Or else you could find the current I = V/R = $(12 V)/(6 \Omega) = 2 A$ , then use Ohm's Law to get voltages.

$$R_{1}=4\Omega \qquad R_{2}=2\Omega$$

# **Parallel Resistors I**

5)

7 A

|                                   | 1)        | 10 A       |
|-----------------------------------|-----------|------------|
| In the circuit below, what is the | 2)        | zero       |
| current through R <sub>1</sub> ?  | 3)        | 5 A        |
|                                   | <b>4)</b> | <b>2</b> A |



## **Parallel Resistors I**



Follow-up: What is the total current through the battery?

#### **Parallel Resistors II**

Points P and Q are connected to a battery of fixed voltage. As more resistors *R* are added to the parallel circuit, what happens to the total current in the circuit?

- 1) increases
- 2) remains the same
- 3) decreases
- 4) drops to zero



#### **Parallel Resistors II**

Points P and Q are connected to a battery of fixed voltage. As more resistors *R* are added to the parallel circuit, what happens to the total current in the circuit?



- 2) remains the same
- 3) decreases
- 4) drops to zero

As we add parallel resistors, the overall **resistance of the circuit drops**. Since *V* = *IR*, and *V* is held constant by the battery, when **resistance decreases**, the current must increase.



**Follow-up:** What happens to the current through each resistor?

### Diagrams

Which of these diagrams represent the same circuit?

Y

A.a and b B.a and c C.b and c D.a, b, and c E.a, b, and d



## Diagrams

Which of these diagrams represent the same circuit?

A.a and b B.a and c C.b and c D.a, b, and c E.a, b, and d



The three elements are in parallel – their ends are connected by conducting wires. The order of the elements and length of the connecting wires are immaterial.

# **Circuit I**

Three lightbulbs, A, B and C are in the circuit shown. When the switch is closed, lightbulb A will:

- 1) glow brighter than before
- 2) glow just the same as before
- 3) glow dimmer than before
- 4) go out completely
- 5) explode



# **Circuit** I

Three lightbulbs, A, B and C are in the circuit shown. When the switch is closed, lightbulb A will: 1) glow brighter than before

- 2) glow just the same as before
- 3) glow dimmer than before
- 4) go out completely

5) explode

Since the total resistance through bulbs B and C is now less than the resistance through B alone, the total resistance of the circuit decreases. This means that the current through bulb A increases.

Follow-up: What happens to bulb B?



# **Circuits II**

The lightbulbs in the circuit below are identical with the same resistance R. Which circuit produces more light? (brightness  $\iff$  power)

- 1) circuit 1
- 2) circuit 2
- 3) both the same
- 4) it depends on R



# **Circuits II**

The lightbulbs in the circuit below are identical with the same resistance R. Which circuit produces more light? (brightness  $\iff$  power)



In #1, the bulbs are in **parallel**, **lowering the total resistance** of the circuit. Thus, circuit #1 will draw a higher current, which leads to more light, because P = J V.



### **More Circuits I**

What happens to the voltage across the resistor  $R_1$  when the switch is closed? The voltage will:

- 1) increase
- 2) decrease
- 3) stay the same



## **More Circuits I**

What happens to the voltage across the resistor  $R_1$  when the switch is closed? The voltage will:



With the switch closed, the addition of  $R_2$  to  $R_3$  decreases the equivalent resistance, so the current from the battery increases. This will cause an increase in the voltage across  $R_1$ .



Follow-up: What happens to the current through  $R_3$ ?

### **More Circuits II**

What happens to the voltage across the resistor  $R_4$  when the switch is closed?

- 1) increases
- 2) decreases
- 3) stays the same



#### **More Circuits II**

What happens to the voltage across the resistor  $R_4$  when the switch is closed?



We just saw that closing the switch causes an increase in the voltage across  $R_1$  (which is  $V_{AB}$ ). The voltage of the battery is <u>constant</u>, so if  $V_{AB}$  increases, then  $V_{BC}$  must decrease!



Follow-up: What happens to the current through R<sub>4</sub>?

### **Even More Circuits**

Which resistor has the greatest current going through it? Assume that all the resistors are equal. 1) *R*<sub>1</sub>

- 2) both  $R_1$  and  $R_2$  equally
- 3)  $R_3$  and  $R_4$
- 4) *R*<sub>5</sub>
- 5) all the same



#### **Even More Circuits**

Which resistor has the greatest current going through it? Assume that all the resistors are equal. 1) *R*<sub>1</sub>

- 2) both  $R_1$  and  $R_2$  equally
- 3)  $R_3$  and  $R_4$

The same current must flow ` through left and right combinations of resistors. On the LEFT, the current splits equally, so  $I_1 = I_2$ . On the RIGHT, more current will go through  $R_5$  than  $R_3 + R_4$ since the branch containing  $R_5$  has less resistance.



Follow-up: Which one has the smallest voltage drop?

# Dimmer

When you rotate the knob of a light dimmer, what is being changed in the electric circuit?

- 1) the power
- 2) the current
- 3) the voltage
- 4) both (1) and (2)
- 5) both (2) and (3)

# Dimmer

When you rotate the knob of a light dimmer, what is being changed in the electric circuit?

- 1) the power
- 2) the current
- 3) the voltage

4) both (1) and (2)

5) both (2) and (3)

The voltage is provided at 120 V from the outside. The light dimmer increases the resistance and therefore decreases the current that flows through the lightbulb.

**Follow-up:** Why does the voltage not change?

#### **Space Heaters**

Two space heaters in your living room are operated at 120 V. Heater 1 has twice the resistance of heater 2. Which one will give off more heat?

- 1) heater 1
- 2) heater 2
- 3) both equally

#### **Space Heaters**

Two space heaters in your living room are operated at 120 V. Heater 1 has twice the resistance of heater 2. Which one will give off more heat?



Using  $P = V^2 / R$ , the heater with the smaller resistance will have the larger power output. Thus, heater 2 will give off more heat.

**Follow-up:** Which one carries the greater current?

# **Junction Rule**



H





# **Junction Rule**

#### What is the current in branch P?



The current entering the junction in **red** is 8 A, so the current leaving must also be 8 A. **One exiting branch has 2 A**, so the other branch (at P) must have 6 A.



# **Kirchhoff's Rules**

Which of the equations is valid for the circuit below?

1)  $2 - l_1 - 2l_2 = 0$ 

$$2) \quad 2 - 2l_1 - 2l_2 - 4l_3 = 0$$

$$3) \ 2 - I_1 - 4 - 2I_2 = 0$$

4) 
$$I_3 - 4 - 2I_2 + 6 = 0$$

5) 
$$2 - I_1 - 3I_3 - 6 = 0$$



#### **Kirchhoff's Rules**

Which of the equations is valid for the circuit below?

1) 
$$2 - I_1 - 2I_2 = 0$$
  
2)  $2 - 2I_1 - 2I_2 - 4I_3 = 0$   
3)  $2 - I_1 - 4 - 2I_2 = 0$   
4)  $I_3 - 4 - 2I_2 + 6 = 0$   
5)  $2 - I_1 - 3I_3 - 6 = 0$ 

**Eqn. 3 is valid for the left loop:** The left battery gives +2V, then there is a drop through a  $1\Omega$ resistor with current  $I_1$  flowing. Then we go through the middle battery (but from + to – !), which gives –4V. Finally, there is a drop through a  $2\Omega$  resistor with current  $I_2$ .



### **RC Circuits**

The time constant for the discharge of this capacitor is A.1 s.
B.2 s.
C.4 s.
D.5 s.
E. The capacitor doesn't discharge because the resistors cancel each other.



#### **RC Circuits**

The time constant for the discharge of this capacitor is A.1 s.
B.2 s.
C.4 s.
D.5 s.
E. The capacitor doesn't discharge because the resistors cancel each other.



# **Circuits III**

The three lightbulbs in the circuit all have the same resistance of 1  $\Omega$ . By how much is the brightness of bulb B greater or smaller than the brightness of bulb A? (brightness  $\iff$  power)

- 1) twice as much
- 2) the same
- 3) 1/2 as much
- 4) 1/4 as much
- 5) 4 times as much



# **Circuits III**

The three lightbulbs in the circuit all have the same resistance of 1  $\Omega$ . By how much is the brightness of bulb B greater or smaller than the brightness of bulb A? (brightness  $\iff$  power)



2) the same

4)

3) 1/2 as much

1/4 as much

We can use  $P = V^2/R$  to compare the power:

$$P_A = (V_A)^2 / R_A = (10 \text{ V})^2 / 1 \Omega = 100 \text{ W}$$

$$P_B = (V_B)^2 / R_B = (5 \text{ V})^2 / 1 \Omega = 25 \text{ W}$$



#### **Follow-up:** What is the total current in the circuit?