A rectangular loop of wire lies in the same page as a wire carrying a constant current. The rectangular loop has a length (parallel to wire) I and width w; the wire carries a current I. The mutual inductance of the system will be doubled in which of the following cases?

- I. *I* is doubled
- II. *w* is doubled
- III. I is doubled
- IV. *d* is halved

- 1. I only
- 2. II only
- 3. III only
- 4. IV only

- 5. I or II
 6. I or III
 7. L H and
- 7. I, II or III
- 8. II or III

9. II, III or IV10. I, II, III or IV

The switch in the circuit illustrated below has been open for a very long time. What is the current through the inductor the instant the switch is closed? \equiv

5. V * (R₁ + R₂)/ (R₁ * R₂)

The switch in the circuit illustrated below has been closed for a very long time. What is the current through the inductor?

5. V * (R₁ + R₂)/ (R₁ * R₂)

The switch in the circuit illustrated below has been closed for a very long time and is reopened. At the instant the switch is reopened, what is the current through R_1 ?

5. V * (R₁ + R₂)/(R₁ * R₂)