PHYS102 - Gauss's Law.

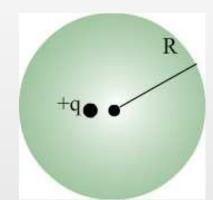
Dr. Suess

January 31, 2007

Question #1

PRS Questions

- Question #1
- Answer to Question#1


Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

A charge +q is located inside a sphere of radius R. The charge is NOT at the center of the sphere. According to Gauss's Law, which of the following statement(s) is (are) true

- I. The magnitude of the electric field is constant over the surface of the sphere.
- II. The electric flux varies over the surface of the sphere.
- III. The electric flux is constant.
- IV. The electric flux is directly proportional to +q.

- 1. Only I is correct.
- 2. Only II is correct.
- 3. Only III is correct.
- 4. Only II and IV are correct.
- 5. Only III and IV are correct.

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

• The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Electric flux is constant.

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

- The electric flux is given by $\Phi = rac{Q_{enclosed}}{arepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Electric flux is constant.
- The answer is 5.

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Electric flux is constant.
- The answer is 5.

Note: The magnitude of the electric field over the spherical surface is not constant since the charge is NOT centered with the sphere.

PRS Questions

- Question #1
- Answer to Question

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Electric flux is constant.
- The answer is 5.

Note: The magnitude of the electric field over the spherical surface is not constant since the charge is NOT centered with the sphere.

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}}$$

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

 The above equation is a very general equation and holds true for any surface.

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

- The above equation is a very general equation and holds true for any surface.
- This is an electric flux law

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

- The above equation is a very general equation and holds true for any surface.
- This is an electric flux law NOT AN ELECTRIC FIELD LAW.

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

- The above equation is a very general equation and holds true for any surface.
- This is an electric flux law NOT AN ELECTRIC FIELD LAW.
 - Gauss's Law is always true, but the law is NOT always useful in determining electric fields from charge distributions.

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{0}} \qquad \text{(GAUSS'S LAW)}$$

- The above equation is a very general equation and holds true for any surface.
- This is an electric flux law NOT AN ELECTRIC FIELD LAW.
 - Gauss's Law is always true, but the law is NOT always useful in determining electric fields from charge distributions.
 - We will examine the only THREE cases where the law is useful in determining the electric field.

PRS Questions

Gauss's Law

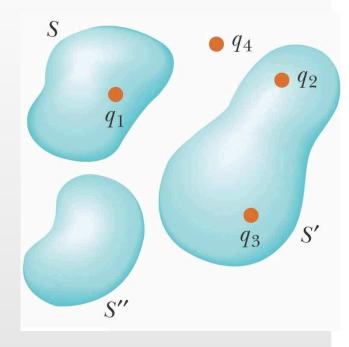
- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

Consider the figure on the right:

PRS Questions


Gauss's Law

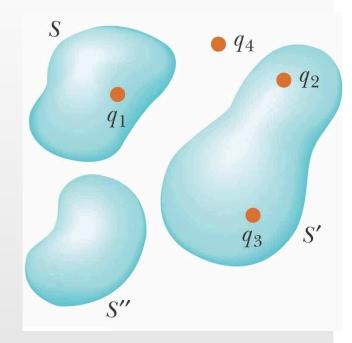
- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

Consider the figure on the right:

PRS Questions


Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

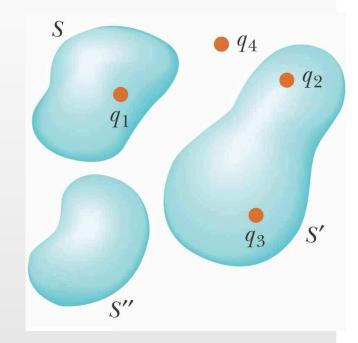
Useful Geometries and Gauss's Law

Worked Examples

Consider the figure on the right:

PRS Questions

Gauss's Law


- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

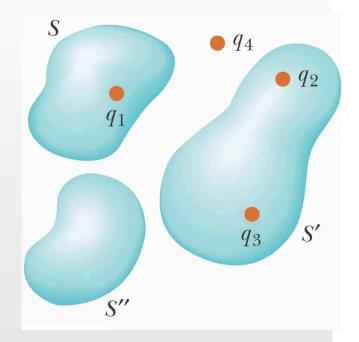
Consider the figure on the right:

$$\Phi_S = \frac{Q_{enclosed}}{\varepsilon_0} = \frac{q_1}{\varepsilon_0}$$

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law


Useful Geometries and Gauss's Law

Worked Examples

Consider the figure on the right:

$$\Phi_S = \frac{Q_{enclosed}}{\varepsilon_0} = \frac{q_1}{\varepsilon_0}$$

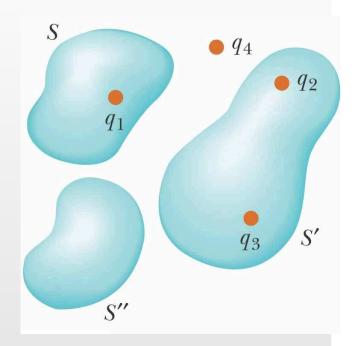
$$\Phi_{S'} = \frac{q_2 + q_3}{\varepsilon_0}$$

PRS Questions

Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law


Worked Examples

Consider the figure on the right:

$$\Phi_S = \frac{Q_{enclosed}}{\varepsilon_0} = \frac{q_1}{\varepsilon_0}$$

$$\Phi_{S'} = \frac{q_2 + q_3}{\varepsilon_0}$$

$$\Phi_{S''} = 0$$

PRS Questions

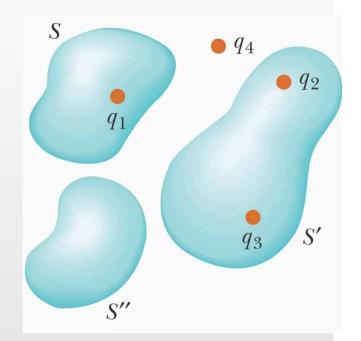
Gauss's Law

- Gauss's Law -General
- Applying Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

Consider the figure on the right:

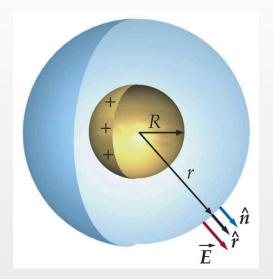

 For the arbitrarily shaped surfaces:

$$\Phi_S = \frac{Q_{enclosed}}{\varepsilon_0} = \frac{q_1}{\varepsilon_0}$$

$$\Phi_{S'} = \frac{q_2 + q_3}{\varepsilon_0}$$

$$\Phi_{S''} = 0$$

 One CANNOT use Gauss's Law to find the electric field due to the charge configuration.


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples


1. Spherical Symmetry.

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry


- 1. Spherical Symmetry.
 - A charge distribution has spherical symmetry if the views of it from all points on the spherical surface are the same.

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry


- 1. Spherical Symmetry.
 - A charge distribution has spherical symmetry if the views of it from all points on the spherical surface are the same.
 - Choose a spherical surface of radius r, centered at the charge distribution - such surfaces are called "Gaussian surfaces"

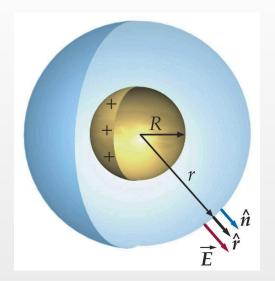
PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

- 1. Spherical Symmetry.
 - A charge distribution has spherical symmetry if the views of it from all points on the spherical surface are the same.
 - Choose a spherical surface of radius r, centered at the charge distribution such surfaces are called "Gaussian surfaces"


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

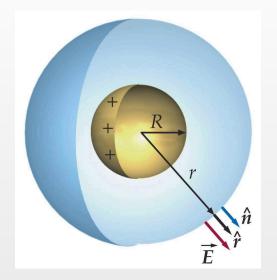

1. Spherical Symmetry.

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry


- 1. Spherical Symmetry.
 - By symmetry, the electric field is directed radially (inward if charge distribution is negative or outward if charge distribution is positive).

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry


- 1. Spherical Symmetry.
 - By symmetry, the electric field is directed radially (inward if charge distribution is negative or outward if charge distribution is positive).

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry


- 1. Spherical Symmetry.
 - By symmetry, the electric field is directed radially (inward if charge distribution is negative or outward if charge distribution is positive).

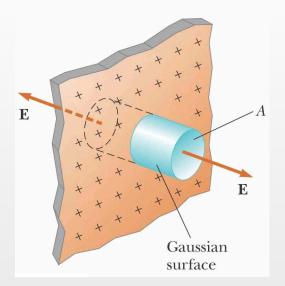
PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

- 1. Spherical Symmetry.
 - By symmetry, the electric field is directed radially (inward if charge distribution is negative or outward if charge distribution is positive).


PRS Questions

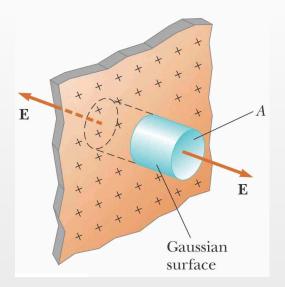
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.


PRS Questions

Gauss's Law

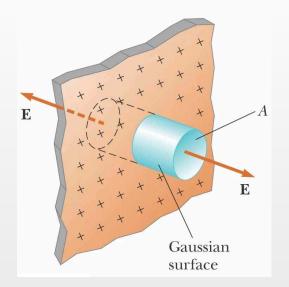
Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.

 A charge distribution has plane symmetry if the views of it from all points on an infinite (or very long) plain surface are the same.


PRS Questions

Gauss's Law

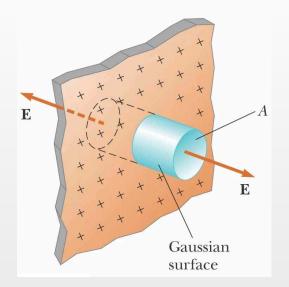
Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.

- A charge distribution has plane symmetry if the views of it from all points on an infinite (or very long) plain surface are the same.
 - Choose a soup-can shaped cylinder, with the charged plane bisecting the cylinder.


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

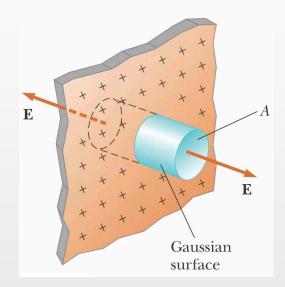
- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.

- A charge distribution has plane symmetry if the views of it from all points on an infinite (or very long) plain surface are the same.
 - Choose a soup-can shaped cylinder, with the charged plane bisecting the cylinder.
 - The only contributing flux is that due to the flat ends.

Plane Symmetry


PRS Questions

Gauss's Law

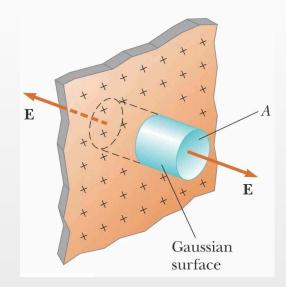
Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.

Plane Symmetry


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

2. Plane Symmetry.

 By symmetry, the electric field is directed perpendicular (away for positive and toward for negative) to the plane.


PRS Questions

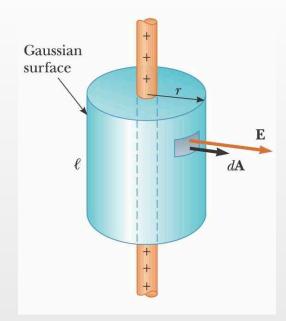
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

3. Cylindrical Symmetry.


PRS Questions

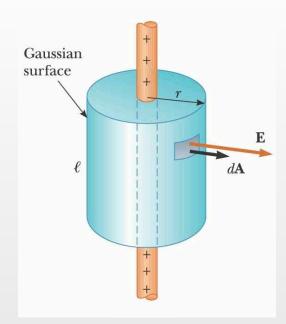
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

- 3. Cylindrical Symmetry.
 - A charge distribution has cylindrical symmetry if the views of it from all points on a cylindrical surface of infinite (or very long) length are the same.


PRS Questions

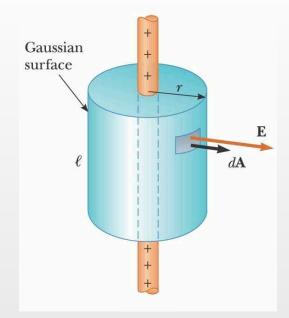
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

- 3. Cylindrical Symmetry.
 - A charge distribution has cylindrical symmetry if the views of it from all points on a cylindrical surface of infinite (or very long) length are the same.
 - Choose a cylindrical Gaussian surface with the center of the Gaussian cylinder coincident with the cylindrical charge distribution.


PRS Questions

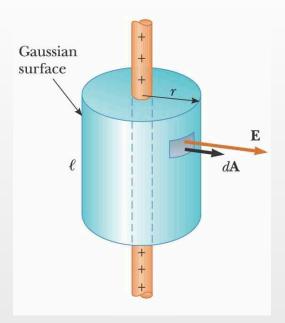
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

3. Cylindrical Symmetry.


PRS Questions

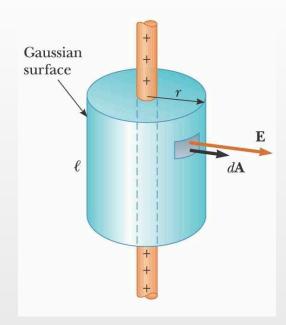
Gauss's Law

Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

- 3. Cylindrical Symmetry.
 - The only contributing flux is along the curved piece of the cylinder.


PRS Questions

Gauss's Law

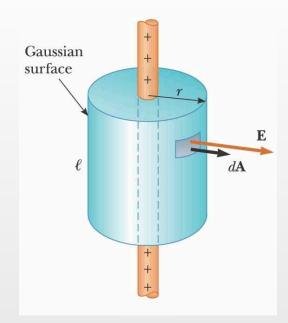
Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

3. Cylindrical Symmetry.

- The only contributing flux is along the curved piece of the cylinder.
- By symmetry, the electric field is directed (away for positive or toward for negative) from the line charge.


PRS Questions

Gauss's Law

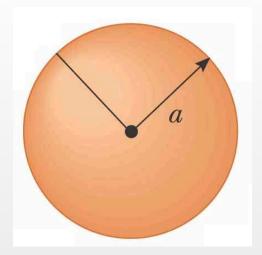
Useful Geometries and Gauss's Law

- Spherical Symmetry
- Spherical Symmetry
- Plane Symmetry
- Plane Symmetry
- Cylindrical Symmetry
- Cylindrical Symmetry

Worked Examples

3. Cylindrical Symmetry.

- The only contributing flux is along the curved piece of the cylinder.
- By symmetry, the electric field is directed (away for positive or toward for negative) from the line charge.
- The magnitude of E depends only on the radial distance from the line charge.


PRS Questions

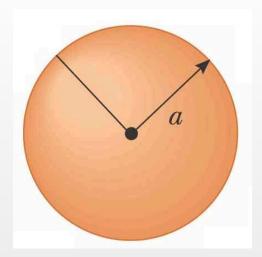
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: The volume charge density inside a solid sphere of radius a is given by $\rho = \rho_0 \, r/a$, where ρ_0 is a constant. Find


PRS Questions

Gauss's Law

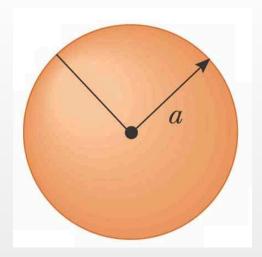
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: The volume charge density inside a solid sphere of radius a is given by $\rho=\rho_0\,r/a$, where ρ_0 is a constant. Find

(a). the total charge.


PRS Questions

Gauss's Law

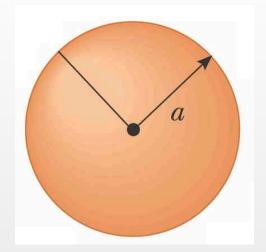
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: The volume charge density inside a solid sphere of radius a is given by $\rho = \rho_0 \, r/a$, where ρ_0 is a constant. Find

- (a). the total charge.
- (b). the electric field strength for r > a and r < a.

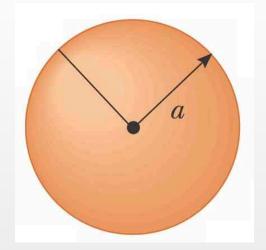

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors


PRS Questions

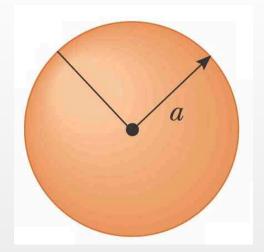
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$dq = \rho \, dV$$


PRS Questions

Gauss's Law

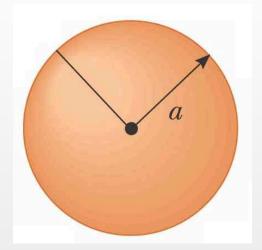
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$dq = \rho \, dV$$

$$Q = \int_0^a \rho \, dV = \int_0^a \frac{\rho_0 \, r}{a} \, 4 \, \pi \, r^2 \, dr$$


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

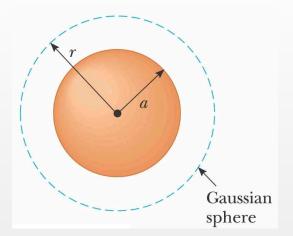
Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$dq = \rho dV$$

$$Q = \int_0^a \rho dV = \int_0^a \frac{\rho_0 r}{a} 4 \pi r^2 dr$$

$$Q = \rho_0 \pi a^3$$

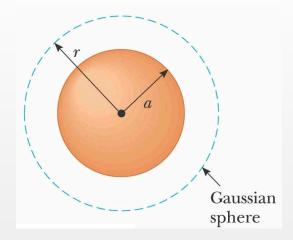

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors


PRS Questions

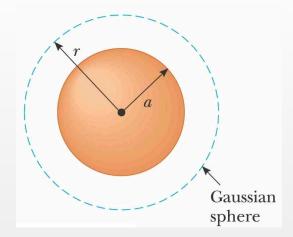
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$


PRS Questions

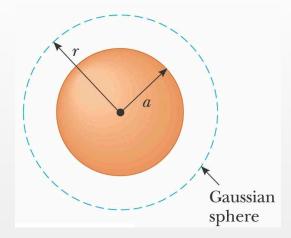
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA$$


PRS Questions

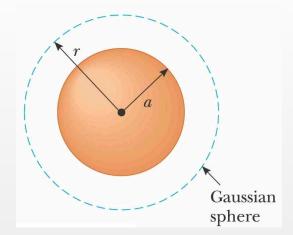
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \, \cdot \, d\vec{A} = E \oint dA = \frac{Q_{\rm enclosed}}{\varepsilon_0}$$


PRS Questions

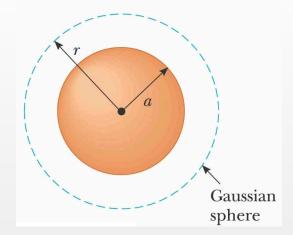
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$


PRS Questions

Gauss's Law

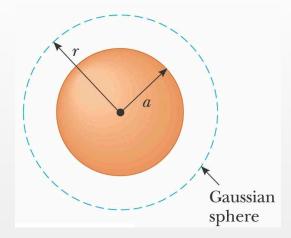
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$

$$\Rightarrow E 4 \pi r^2$$


PRS Questions

Gauss's Law

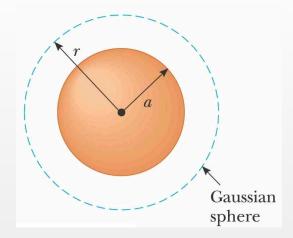
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(\oint dA) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$

$$\Rightarrow E(4\pi r^2)$$


PRS Questions

Gauss's Law

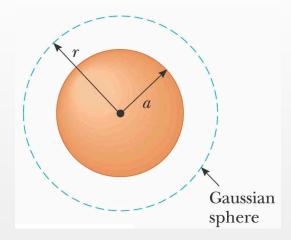
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \left(\oint dA \right) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$

$$\Rightarrow E \left(4\pi r^2 \right) = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$


PRS Questions

Gauss's Law

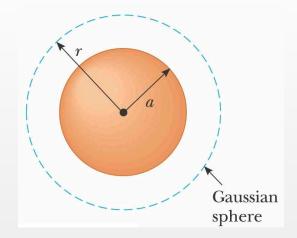
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(\oint dA) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi a^3}{\varepsilon_0}$$

$$\Rightarrow E(4\pi r^2) = \frac{\rho_0 \pi a^3}{\varepsilon_0} \Rightarrow E = \frac{\rho_0 a^3}{4 \varepsilon_0 r^2}$$


PRS Questions

Gauss's Law

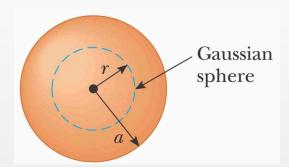
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \left(\oint dA \right) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \, \pi \, a^3}{\varepsilon_0}$$

$$\Rightarrow E \left(4 \, \pi \, r^2 \right) = \frac{\rho_0 \, \pi \, a^3}{\varepsilon_0} \Rightarrow E = \frac{\rho_0 \, a^3}{4 \, \varepsilon_0 \, r^2} \quad \text{(Note: the 1/r}^2 \text{ dependance)}$$

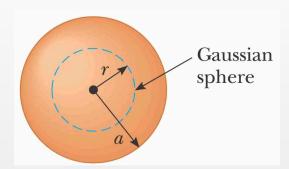

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$


PRS Questions

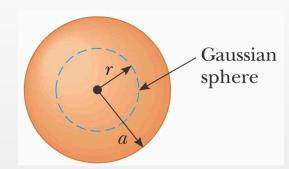
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \, \cdot \, d\vec{A} = E \, \oint \, dA = \frac{Q_{\rm enclosed}}{\varepsilon_0}$$


PRS Questions

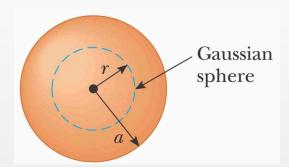
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \, \pi \, r^4}{a \, \varepsilon_0}$$


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi r^4}{a \, \varepsilon_0}$$

$$E 4 \pi r^2$$

PRS Questions

Gauss's Law

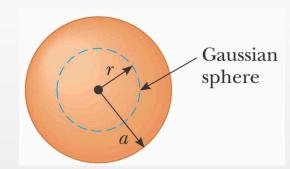
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\rm enclosed}}{\varepsilon_0} = \frac{\rho_0 \,\pi \,r^4}{a \,\varepsilon_0}$$

$$E \,4 \,\pi \,r^2 = \frac{\rho_0 \,\pi \,r^4}{a \,\varepsilon_0}$$


PRS Questions

Gauss's Law

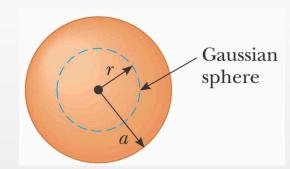
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\rho_0 \pi r^4}{a \,\varepsilon_0}$$

$$E \, 4 \pi r^2 = \frac{\rho_0 \pi r^4}{a \,\varepsilon_0} \Rightarrow E = \frac{\rho_0 \, r^2}{4 \,\varepsilon_0 \, a}$$


PRS Questions

Gauss's Law

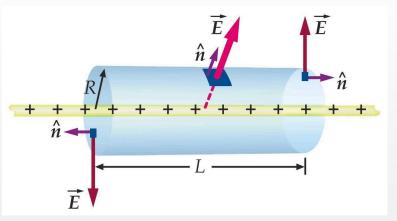
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\begin{split} \Phi &= \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\rm enclosed}}{\varepsilon_0} = \frac{\rho_0 \, \pi \, r^4}{a \, \varepsilon_0} \\ E \, 4 \, \pi \, r^2 &= \frac{\rho_0 \, \pi \, r^4}{a \, \varepsilon_0} \Rightarrow E = \frac{\rho_0 \, r^2}{4 \, \varepsilon_0 \, a} \quad \text{(Note: NO 1/r}^2 \, \text{dependance)} \end{split}$$

Cylindrical Symmetry - Problem


PRS Questions

Gauss's Law

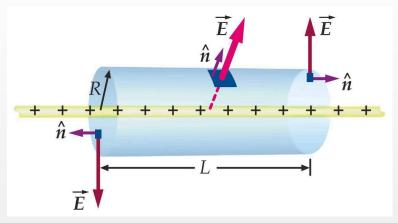
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

Cylindrical Symmetry - Problem


PRS Questions

Gauss's Law

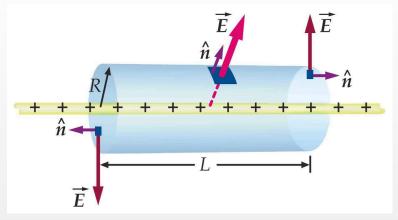
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

To find the electric field first construct a Gaussian surface as shown above (in blue) and note that the magnitude of the electric field is constant over the cylinder. The electric flux through the Gaussian surface is


PRS Questions

Gauss's Law

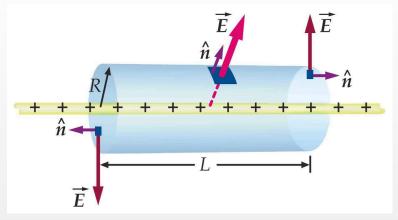
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$


PRS Questions

Gauss's Law

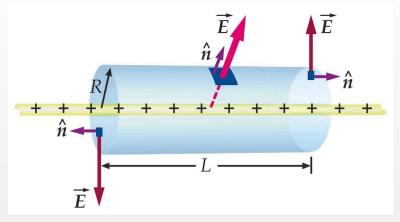
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA$$


PRS Questions

Gauss's Law

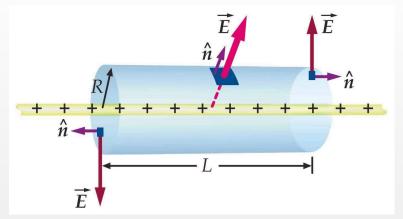
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

$$\Phi = \oint \, \vec{E} \, \cdot \, d\vec{A} = E \, \oint \, dA = \frac{Q_{\rm enclosed}}{\varepsilon_0}$$


PRS Questions

Gauss's Law

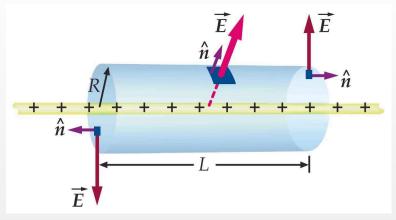
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$


PRS Questions

Gauss's Law

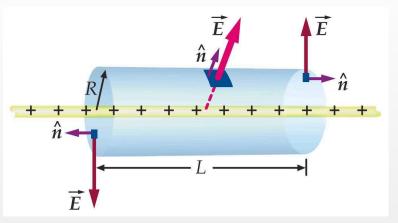
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Problem: Find the electric field strength for a very long wire carrying uniform charge density $(+\lambda)$ as a function of the distance away from wire.

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

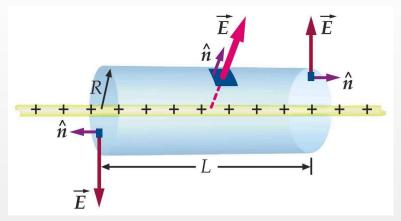

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors


PRS Questions

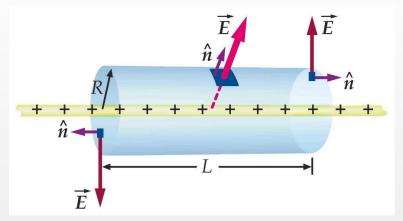
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$


PRS Questions

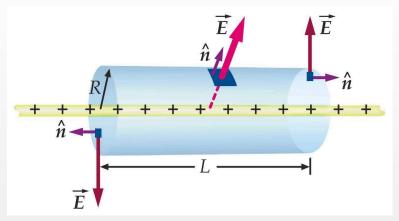
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA$$


PRS Questions

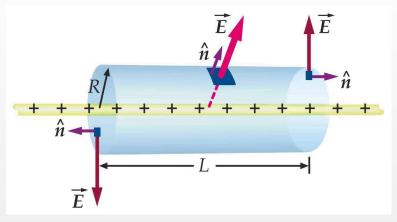
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \, \cdot \, d\vec{A} = E \, \oint \, dA = \frac{Q_{\rm enclosed}}{\varepsilon_0}$$


PRS Questions

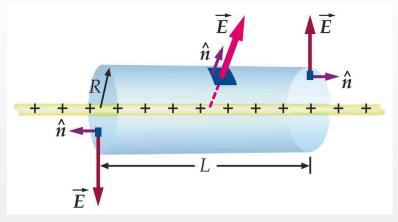
Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \, \cdot \, d\vec{A} = E \oint dA = \frac{Q_{\rm enclosed}}{\varepsilon_0} = \frac{\lambda \, L}{\varepsilon_0}$$


PRS Questions

Gauss's Law

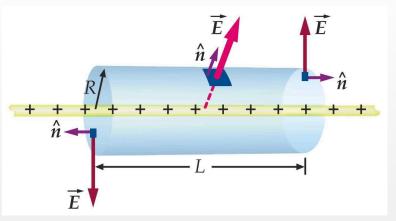
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = \frac{Q_{\rm enclosed}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

$$\Rightarrow E \, 2 \, \pi \, R \, L$$


PRS Questions

Gauss's Law

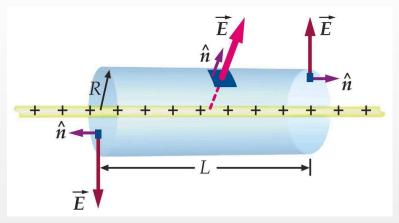
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(\oint dA) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

$$\Rightarrow E(2\pi R L)$$


PRS Questions

Gauss's Law

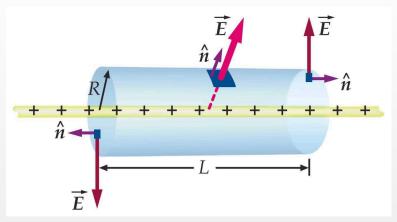
Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(\oint dA) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

$$\Rightarrow E(2\pi R L) = \frac{\lambda L}{\varepsilon_0}$$


PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry -Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry -Problem III
- Spherical Symmetry -Problem IV
- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(\oint dA) = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

$$\Rightarrow E(2\pi R L) = \frac{\lambda L}{\varepsilon_0} \Rightarrow E = \frac{\lambda}{2\pi R \varepsilon_0}$$

Conductors

PRS Questions

Gauss's Law

Useful Geometries and Gauss's Law

Worked Examples

- Spherical Symmetry Problem
- Spherical Symmetry -Problem II
- Spherical Symmetry Problem III
- Spherical Symmetry -

Problem IV

- Cylindrical Symmetry
- Problem
- Cylindrical Symmetry
- Problem II
- Conductors

Let's move to the chalkboard.