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• The voltage across the resistor is represented by the phasor

above since the driving voltage is sinusoidal.
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the voltages.
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supplied by the AC Voltage source.
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and the peak voltages is now a trigonometry problem.
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• NOTE: The driving peak voltage is out of phase with the peak

current through the circuit.
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• The quantity Z is called the impedance of this series circuit.

• Impedance is a generalization of resistance to include the

frequency-dependent effects of capacitance and inductance.
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• In an AC circuit containing resistors, inductors, and capacitors,

the current through the circuit will not be in phase with the

driving voltage source.

tanϕ =
χL − χc

R

• A purely resistive circuit will have tanϕ = 0 ⇒ ϕ = 0.

• The current in a purely resistive circuit will be in phase with the

driving voltage.
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• Can we talk about power in AC circuits?
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◦ Remember, without phases P = I2 R.

◦ There is a standard engineering technique that allows
one to discuss the average power.
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• Can we talk about power in AC circuits?

◦ It is more difficult than DC Circuits because of the phase

shifts.

◦ Remember, without phases P = I2 R.

◦ There is a standard engineering technique that allows
one to discuss the average power.

◦ What is the average of a sinusoidally varying function
over one period of oscillation? ZERO.

◦ Does it make sense to talk about averages for
sinusoidally varying functions? Yes, because the wall

socket is a type of average.
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where 〈〉 denotes time-average



Definition of Root-Mean-Square

AC Circuits

Root-Mean-Square

• Power in AC Circuits
• Definition of
Root-Mean-Square

• Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

PHYS102 AC Circuits - Phasors – slide 7

• The average of a sine function (or cosine) is zero over one

time period.

• If we square a sine (or cosine) function, then its average is 1/2

over one time period.

• Defining the root-mean-square (engineering practice) as:

V = VP sinωt

VRMS =
√

〈

V 2

P sin2 ωt
〉

where 〈〉 denotes time-average



Definition of Root-Mean-Square

AC Circuits

Root-Mean-Square

• Power in AC Circuits
• Definition of
Root-Mean-Square

• Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

PHYS102 AC Circuits - Phasors – slide 7

• The average of a sine function (or cosine) is zero over one

time period.

• If we square a sine (or cosine) function, then its average is 1/2

over one time period.

• Defining the root-mean-square (engineering practice) as:

V = VP sinωt

VRMS =
√

〈

V 2

P sin2 ωt
〉

where 〈〉 denotes time-average

〈

sin2 ωt
〉

=
1

T

T
∫

0

sin2 ωt dt where T is one period



Definition of Root-Mean-Square

AC Circuits

Root-Mean-Square

• Power in AC Circuits
• Definition of
Root-Mean-Square

• Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

PHYS102 AC Circuits - Phasors – slide 7

• The average of a sine function (or cosine) is zero over one

time period.

• If we square a sine (or cosine) function, then its average is 1/2

over one time period.

• Defining the root-mean-square (engineering practice) as:

V = VP sinωt

VRMS =
√

〈

V 2

P sin2 ωt
〉

where 〈〉 denotes time-average
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T
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∫
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sin2 ωt
〉

=
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• The time-average product of voltage and current with an

arbitrary phase difference ϕ is given by
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• The time-average product of voltage and current with an

arbitrary phase difference ϕ is given by

〈P 〉 = 〈IP sin(ωt + ϕ)VP sinωt〉
= IP VP
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(sin2 ωt) (cosϕ) + (sinωt)(cosωt)(sinϕ)
〉
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• The time-average product of voltage and current with an

arbitrary phase difference ϕ is given by

〈P 〉 = 〈IP sin(ωt + ϕ)VP sinωt〉
= IP VP

〈
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cosϕ (is called the power factor.)
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.
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circuit, let’s address an important issue.

• Not all devices require 120-V AC.
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.

◦ How do we “transform” the amplitude of the voltage

provided by the power company to another amplitude?
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.

◦ How do we “transform” the amplitude of the voltage

provided by the power company to another amplitude?

◦ We go back to Faraday’s Law of Induction.
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.

◦ How do we “transform” the amplitude of the voltage

provided by the power company to another amplitude?

◦ We go back to Faraday’s Law of Induction.

• If we strategically place two different solenoids near each

other in an AC circuit, then the EMF through the solenoids will

have different values.
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• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.

◦ How do we “transform” the amplitude of the voltage

provided by the power company to another amplitude?

◦ We go back to Faraday’s Law of Induction.

• If we strategically place two different solenoids near each

other in an AC circuit, then the EMF through the solenoids will

have different values.

• A device which uses an arrangement of coils to vary the

amplitude of the primary voltage source is called a transformer

and one of its circuit symbol is shown above in the title.



Transformers

AC Circuits

Root-Mean-Square

Transforming Voltage
Amplitudes - AC -
Circuits

• Transformers

• Transformers - Picture
• Transformers -
Voltage

• Transformers - Power

PHYS102 AC Circuits - Phasors – slide 9

• Now that we have power dissipated through an RLC series

circuit, let’s address an important issue.

• Not all devices require 120-V AC. Some devices require only
12-V AC.

◦ How do we “transform” the amplitude of the voltage

provided by the power company to another amplitude?

◦ We go back to Faraday’s Law of Induction.
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• The artist rendition below is that of a typical transformer.
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• The artist rendition below is that of a typical transformer.

• Iron core used to concentrate magnetic flux which ensures
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• The artist rendition below is that of a typical transformer.

• Iron core used to concentrate magnetic flux which ensures

◦ the magnetic flux through primary and secondary coils is

the same.
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• The artist rendition below is that of a typical transformer.

• Iron core used to concentrate magnetic flux which ensures

◦ the magnetic flux through primary and secondary coils is

the same.
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• Since the magnetic flux is the same through both coils, the rate

of change of magnetic flux is the same through the two coils.
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• Since the magnetic flux is the same through both coils, the rate

of change of magnetic flux is the same through the two coils.

VP = NP

dΦB

dt
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• Since the magnetic flux is the same through both coils, the rate

of change of magnetic flux is the same through the two coils.

VP = NP

dΦB

dt

VS = NS

dΦB

dt
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• Since the magnetic flux is the same through both coils, the rate

of change of magnetic flux is the same through the two coils.

VP = NP

dΦB

dt

VS = NS

dΦB

dt

⇒ VP

NP

=
VS

NS
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• Since the magnetic flux is the same through both coils, the rate

of change of magnetic flux is the same through the two coils.

VP = NP

dΦB

dt

VS = NS

dΦB

dt

⇒ VP

NP

=
VS

NS

⇒ VS = VP

NS

NP
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• It seems that the secondary voltage can be arbitrarily large.
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• It seems that the secondary voltage can be arbitrarily large.

• Does this violate conservation of energy?
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• It seems that the secondary voltage can be arbitrarily large.

• Does this violate conservation of energy?

◦ No.
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• It seems that the secondary voltage can be arbitrarily large.

• Does this violate conservation of energy?

◦ No.

◦ A transformer can not increase power.
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• It seems that the secondary voltage can be arbitrarily large.

• Does this violate conservation of energy?

◦ No.

◦ A transformer can not increase power.

• Ideal transformers transfer all the power supplied by the
primary source to the secondary.
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• It seems that the secondary voltage can be arbitrarily large.

• Does this violate conservation of energy?

◦ No.

◦ A transformer can not increase power.

• Ideal transformers transfer all the power supplied by the
primary source to the secondary.

IP VP = IS VS (Statement of Conservation of Energy)
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