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VRrp

N/

e The voltage across the resistor is represented by the phasor
above since the driving voltage is sinusoidal.
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the voltages.

Vcp

e Apply Kirchhoff’'s Loop rule to find a relationship between all
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e The length of the resultant phasor represents the peak voltage
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e Finding relationships between the peak current in the circuit
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e The quantity Z is called the impedance of this series circuit.

e Impedance is a generalization of resistance to include the
frequency-dependent effects of capacitance and inductance.
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e A purely resistive circuit will have tan ¢ = 0 = ¢ = 0.

e The current in a purely resistive circuit will be in phase with the

driving voltage.
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" PHYS102

AC Circuits - Phasors — slide 6



-1

AC Circuits

Power in AC Circuits

Root-Mean-Square

® Power in AC Circuits
e Definition of
Root-Mean-Square

e Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase

shifts.

" PHYS102

AC Circuits - Phasors — slide 6



-1

AC Circuits

Power in AC Circuits

Root-Mean-Square

® Power in AC Circuits
e Definition of
Root-Mean-Square

e Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase
shifts.

o Remember, without phases P = I° R.

" PHYS102

AC Circuits - Phasors — slide 6



-1

AC Circuits

Power in AC Circuits

Root-Mean-Square

® Power in AC Circuits
e Definition of
Root-Mean-Square

e Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase

shifts.

o Remember, without phases P = I° R.

o There is a standard engineering technique that allows

one to discuss the average power.

" PHYS102

AC Circuits - Phasors — slide 6



-1

AC Circuits

Power in AC Circuits

Root-Mean-Square

® Power in AC Circuits
e Definition of
Root-Mean-Square

e Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase

shifts.

o Remember, without phases P = I° R.

o There is a standard engineering technique that allows

one to discuss the average power.

o What is the average of a sinusoidally varying function

over one period of oscillation?
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e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase

shifts.

o Remember, without phases P = I° R.

o There is a standard engineering technique that allows

one to discuss the average power.

o What is the average of a sinusoidally varying function
over one period of oscillation? ZERO.
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e Can we talk about power in AC circuits?

o It is more difficult than DC Circuits because of the phase

shifts.

o Remember, without phases P = I° R.

o There is a standard engineering technique that allows

one to discuss the average power.

o What is the average of a sinusoidally varying function
over one period of oscillation? ZERO.

o Does it make sense to talk about averages for
sinusoidally varying functions? Yes, because the wall

socket is a type of average.
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e The average of a sine function (or cosine) is zero over one

time period.
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AC Circuits e The average of a sine function (or cosine) is zero over one
Root-Mean-Square : :
° Povslle-r.in AC Circuits tlme pe”Od.
® Definiion o e If we square a sine (or cosine) function, then its average is 1/2
oot-Mean-Square
® Time-Averaged Power over one time period.
;f;g;gggg'?xg“_age e Defining the root-mean-square (engineering practice) as:
Circuits
V =Vp sinwt

Vems = \/<V1§ sin?wt) where () denotes time-average

T
. 9 1 . 9 : :
<sm wt> = sin“ wt dt where I is one period

0
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° Povslle-r.in AC Circuits tlme pe”Od.
® Definiion o e If we square a sine (or cosine) function, then its average is 1/2
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e The time-average product of voltage and current with an
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o e The time-average product of voltage and current with an
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e Power in AC Circuits arbitrary phase difference ¢ is given by
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® Power in AC Circuits
e Definition of
Root-Mean-Square

e Time-Averaged Power

Transforming Voltage
Amplitudes - AC -
Circuits

e The time-average product of voltage and current with an

arbitrary phase difference ¢ is given by

(P) = (Ip sin(wt + @) Vp sinwt)
= Ip Vp {(sin® wt) (cos ) + (sinwt)(coswt)(sinp))

1
(P) = 5 p Vp cosyp

Vp = V2Vrus and Ip = V2 Igrars

(P) = Irns VRis cos @

cos ¢ (is called the power factor.)
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® Transformers

® Transformers - Picture
® Transformers -
\oltage

® Transformers - Power

e Now that we have power dissipated through an RLC series

circuit, let's address an important issue.
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e Now that we have power dissipated through an RLC series
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® Transformers

® Transformers - Picture
® Transformers -
\oltage

® Transformers - Power

e Now that we have power dissipated through an RLC series

circuit, let's address an important issue.

e Not all devices require 120-1" AC. Some devices require only

12-V AC.
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Root-Mean-Square
Transforming Voltage e Now that we have power dissipated through an RLC series
Amplitudes - AC - . . , . ;
Circuits circuit, let's address an important issue.
e Transformers - c . .
o Transiormere - Picture e Not all devices require 120-V° AC. Some devices require only
e Transformers -
. 12-V AC.

® Transformers - Power

o How do we “transform” the amplitude of the voltage
provided by the power company to another amplitude?
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e Transformers - 12-V AC
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® Transformers - Power

o How do we “transform” the amplitude of the voltage
provided by the power company to another amplitude?
o We go back to Faraday’s Law of Induction.

e If we strategically place two different solenoids near each
other in an AC circuit, then the EMF through the solenoids will
have different values.
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Circuits circuit, let's address an important issue.
e Transformers - c . .
o Transiormere - Picture e Not all devices require 120-V° AC. Some devices require only
e Transformers - 12_V AC

\oltage
® Transformers - Power

o How do we “transform” the amplitude of the voltage
provided by the power company to another amplitude?

o We go back to Faraday’s Law of Induction.

e If we strategically place two different solenoids near each
other in an AC circuit, then the EMF through the solenoids will
have different values.

e A device which uses an arrangement of coils to vary the
amplitude of the primary voltage source is called a transformer
and one of its circuit symbol is shown above in the title.

" PHYS102 AC Circuits - Phasors — slide 9



Transformers
AC Circuits

Root-Mean-Square

Transforming Voltage e Now that we have power dissipated through an RLC series
Amplitudes - AC - . . , . ;

Circuits circuit, let's address an important issue.

e Transformers - c . .

o Transformors - Picture e Not all devices require 120-1" AC. Some devices require only
e Transformers -

T 12-V AC.

® Transformers - Power

o How do we “transform” the amplitude of the voltage
provided by the power company to another amplitude?

o We go back to Faraday’s Law of Induction.

e If we strategically place two different solenoids near each
other in an AC circuit, then the EMF through the solenoids will
have different values.

e A device which uses an arrangement of coils to vary the
amplitude of the primary voltage source is called a transformer
and one of its circuit symbol is shown above in the title.

" PHYS102 AC Circuits - Phasors — slide 9



-1

AC Circuits

Transformers - Picture

Root-Mean-Square

Transforming Voltage
Amplitudes - AC -
Circuits

® Transformers
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e The artist rendition below is that of a typical transformer.
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e The artist rendition below is that of a typical transformer.
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e Iron core used to concentrate magnetic flux which ensures
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e Transformers N turns Ng tumns
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Primary
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V. Secondary
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e Iron core used to concentrate magnetic flux which ensures

o the magnetic flux through primary and secondary coils is

the same.
| |

' PHYS102 AC Circuits - Phasors — slide 10 -



-1

Transformers - Picture

AC Circuits e The artist rendition below is that of a typical transformer.

Root-Mean-Square

Transforming Voltage
Amplitudes - AC -

. nda
Circuits PT"“““’ _ Seco ry
winding = winding
e Transformers N turns Ng tumns
® Transformers - Picture
e Transformers - Primary ey
current I current
Voltage — b :
@ Transformers - Power ]
Primary
vollage
V. Secondary
voltage

e Iron core used to concentrate magnetic flux which ensures

o the magnetic flux through primary and secondary coils is

the same.
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® Transformers

® Transformers - Picture
® Transformers -
\oltage

® Transformers - Power

e Since the magnetic flux is the same through both coils, the rate
of change of magnetic flux is the same through the two coils.
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e Since the magnetic flux is the same through both coils, the rate
of change of magnetic flux is the same through the two coils.
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e Since the magnetic flux is the same through both coils, the rate
of change of magnetic flux is the same through the two coils.
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e Since the magnetic flux is the same through both coils, the rate
of change of magnetic flux is the same through the two coils.

ddp

Vp = Np ——
P P
ddp

Vg = Ng 228
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Vp Vs
:>NP_NS
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e Since the magnetic flux is the same through both coils, the rate
of change of magnetic flux is the same through the two coils.

Vo= iy 20
Vs = Ns 2
- N
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e It seems that the secondary voltage can be arbitrarily large.
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e It seems that the secondary voltage can be arbitrarily large.
e Does this violate conservation of energy?
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e It seems that the secondary voltage can be arbitrarily large.
e Does this violate conservation of energy?

o No.
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e It seems that the secondary voltage can be arbitrarily large.
e Does this violate conservation of energy?

o No.
o A transformer can not increase power.
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e It seems that the secondary voltage can be arbitrarily large.
e Does this violate conservation of energy?

o No.

o A transformer can not increase power.

e Ideal transformers transfer all the power supplied by the

primary source to the secondary.
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e It seems that the secondary voltage can be arbitrarily large.
e Does this violate conservation of energy?

o No.
o A transformer can not increase power.

Voltage e Ideal transformers transfer all the power supplied by the
® fransiormers - Fouer primary source to the secondary.
IpVp =15 Vs (Statement of Conservation of Energy)
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