PHYS102 - Electric Fields Dipole Moments Field Lines

Dr. Suess

January 22, 2007

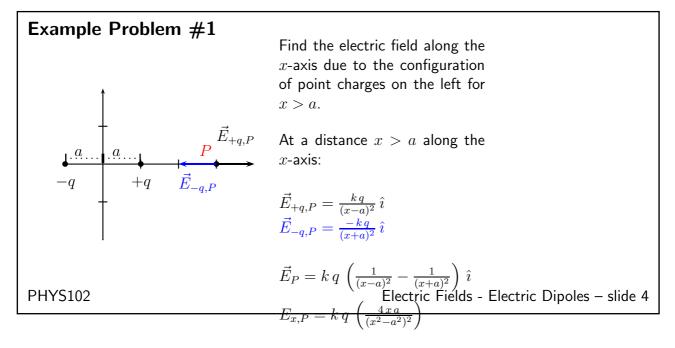
Point Particles E-Field	2
Superposition Principle	3
Example Problem $\#1$	4
Example Problem $\#1 - p.2 \dots \dots$	
Dipoles	6
Permanent Dipole Moments	7
Dipoles - Clarification	8
Macroscopic Objects	9
Macroscopic Objects	10
Charge Density	1
Board Time	12
	.3
Electric Field Lines.	4
Field Line Example +	15
Field Line Example -/+	6

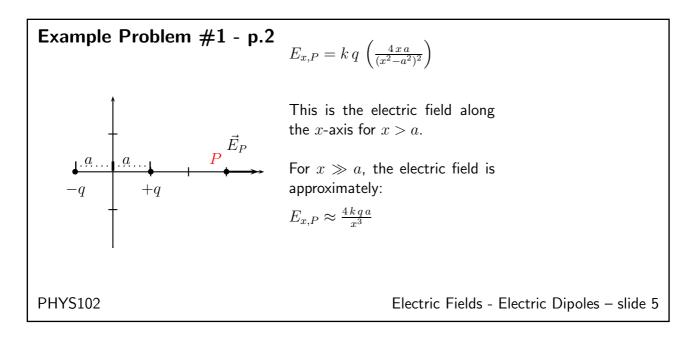
Point Particles E-Field

0.1 Superposition of Fields

Superposition Principle

We have shown in the previous lecture that the electric field generated by a point particle of charge q at a position P in space.


$$\vec{\mathbf{E}}_{iP} = \frac{k\,q}{r_{iP}^2}\hat{r}_{iP}$$


Since the electric field is defined in terms of *force* and we know forces obey the superposition principle, electric fields also obey the superposition principle.

PHYS102

Electric Fields - Electric Dipoles - slide 3

0.2 Field along the x-axis

Dipoles

slide 6

Permanent Dipole Moments

- This type of charge distribution (equal but oppositely charged particles separated a distance L) is termed an <u>electric dipole</u> configuration.
- Polar molecules such as: water, acetone, methanol, and rocket-fuel have permanent dipole moments.
- Definition: Electric dipole \equiv system of two equal and opposite charges, q, separated a distance L. Mathematically,
 - $\vec{p} = q \vec{L}$ where \vec{L} is the separation vector pointing from the negative charge to the positive charge.

PHYS102

Electric Fields - Electric Dipoles - slide 7

Dipoles - Clarification \vec{p} -q+qThis would be the dipole moment (for the example covered in lecture). **PHYS102** Electric Fields - Electric Dipoles - slide 8

0.3 Continuous Charge Distributions

Macroscopic Objects

- If we consider the simple act of charging a glass rod, we could ask the following question:
 - How would you find the electric field generated by a long continuous glass rod?
 - ♦ You could sum up the electric field generated by each charge on the rod, but this may take a very long time since there could be ~ 10²³ charged particles on the rod.
 - You may be able to simplify your life:
 - Treat collection of charged particles as a "spread" of continuous charge.

PHYS102

Electric Fields - Electric Dipoles - slide 10

Charge Density

- Charged distributions extended throughout a:
 - Volume: described by a volume charge density $(\rho = \frac{\Delta Q}{\Delta V})$.
 - Area: described by a surface charge density $(\sigma = \frac{\Delta Q}{\Delta A})$.
 - Line: described by a linear charge density $(\lambda = \frac{\Delta Q}{\Delta L})$.
- Units:
 - $[\rho] = \frac{C}{m^3}$.
 - $[\sigma] = \frac{C}{m^2}$.
 - $[\lambda] = \frac{C}{m}$.

PHYS102

Electric Fields - Electric Dipoles - slide 11

Board Time

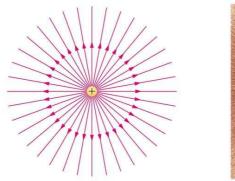
Let's move to the board for an example. PHYS102

Electric Fields - Electric Dipoles - slide 12

Electric Field Lines

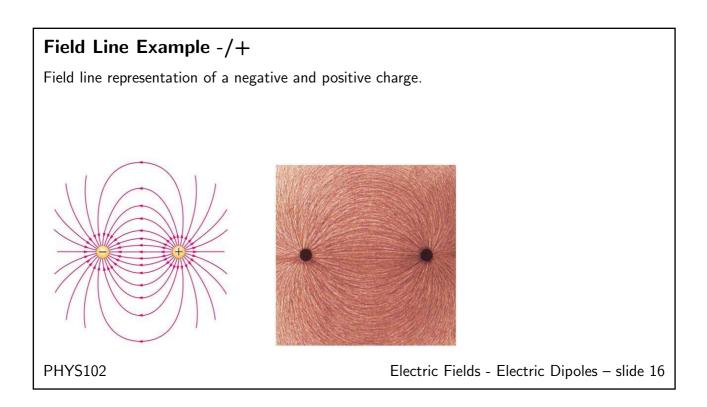
In discussing electric fields, it is sometimes better to visualize the electric field. Since the electric field is everywhere surrounding a charged particle, so we use a set of standard rules when drawing electric fields.

- Electric field lines begin on positive (or at infinity) and end on negative charges (or at infinity).
- Lines are drawn uniformly spaced entering or leaving an isolated point charge.
- Number of lines proportional to the magnitude of the charge.
- The density of lines is proportional to the magnitude of the electric field at that point.
- Electric field lines do not cross.


PHYS102

PHYS102

Electric Fields - Electric Dipoles - slide 14


Field Line Example +

Field line representation of a positive charge.

Electric Fields - Electric Dipoles - slide 15

