
AC Circuits

0.1 Inductors in an AC circuit

"Out-of-Phase?" for Inductor

• The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

• The current through the inductor is given by

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t \qquad \qquad I(t) = \frac{V_P}{\omega L} \left(-\cos \omega t \right) \rightarrow \frac{V_P}{\omega L} \sin \left(\omega t - \frac{\pi}{2} \right)$$

• From trigonometry:

$$-\cos\omega t = \sin\left(\omega t - \frac{\pi}{2}\right)$$

PHYS102

AC Circuits - Phasors - slide 2

Inductive Reactance

• The current through the inductor is

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

• The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.

 $\circ\,$ Current lags behind the driving voltage by 90°.

- The peak current through the capacitor is $I_P = \frac{V_P}{\omega L}$
 - $\circ\,$ This resembles Ohm's Law with $I_P=rac{V_P}{\chi_L}$
 - The term $\chi_L = \omega L$ has a unit of Ohm and is called inductive reactance (χ_L)

PHYS102

AC Circuits - Phasors – slide 3

Properties of Inductive Reactance

• The reactance for an inductor describes the behavior of a inductor placed in a circuit with a time-varying voltage source.

 $\chi_L = \omega L$

- When ω is large, χ_L is large so the inductor offers greater "resistance" to current flow.
- When ω is small, χ_L is small so the inductor offers less "resistance" to current flow.
- χ_L is NOT the same as resistance because NO POWER IS DISSIPATED THROUGH A INDUCTOR.

PHYS102

AC Circuits - Phasors - slide 4

Adding up voltages (currents) in AC circuits

- When several components are connected in series, their potential differences add.
- When several components are connected in *parallel*, their currents add.
- Adding sines and cosines of differing amplitude and phases is algebraically awkward.
 - We could graphically add up the potentials (or currents) (THINK VECTORS).
 - o This method for adding up potentials (or currents) is called "Phasor analysis"

PHYS102

AC Circuits - Phasors - slide 5

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

 $V(t) = V_0 \sin\left(\omega t\right)$

- \circ The phasor lies in the *xy*-plane with it tail fixed at the origin.
- \circ The amplitude of the vector is V_0 .
- $\circ~$ Time dependence is described by a *counterclockwise* rotation with angular speed $\omega.$
- \circ The function V(t) is the instantaneous projection of the phasor on the y-axis.
- Click here for phasor animation.

PHYS102

AC Circuits - Phasors - slide 6