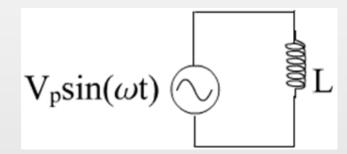

AC Circuits

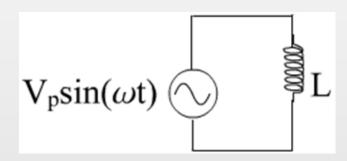
- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors


• Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.

AC Circuits

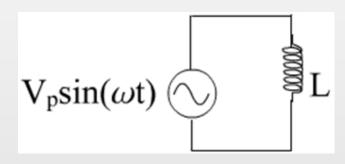
- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits


- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:

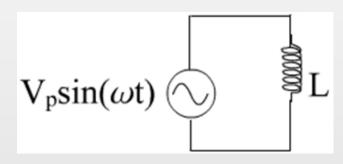


$$V(t) = L \frac{dI}{dt}$$

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:


$$V(t) = L \frac{dI}{dt}$$

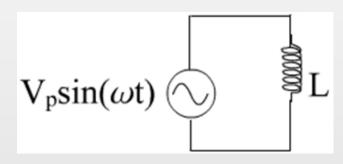
$$L I(t) = \int V_P \sin \omega t \, dt$$

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:

$$V(t) = L \frac{dI}{dt}$$


$$L I(t) = \int V_P \sin \omega t \, dt$$

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

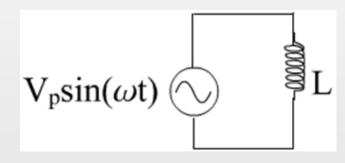
AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:

$$V(t) = L \frac{dI}{dt}$$

$$L I(t) = \int V_P \sin \omega t \, dt$$


$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

- Consider an inductor (L) connected in series with an alternating voltage ($V_P \sin \omega t$) as shown below.
 - Let's calculate the current through the inductor:

$$V(t) = L \frac{dI}{dt}$$

$$L I(t) = \int V_P \sin \omega t \, dt$$

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

• The current through a inductor is "out-of-phase" with the driving voltage source.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• The time dependent voltage was given by

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

• The current through the inductor is given by

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

• The current through the inductor is given by

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

The current through the inductor is given by

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

• From trigonometry:

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

The current through the inductor is given by

$$I(t) = -\frac{V_P}{\omega L} \cos \omega t$$

• From trigonometry:

$$-\cos\omega t = \sin\left(\omega t - \frac{\pi}{2}\right)$$

AC Circuits

Time Varying Voltages and Inductors

- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

The time dependent voltage was given by

$$V(t) = V_P \sin \omega t$$

The current through the inductor is given by

$$I(t) = \frac{V_P}{\omega L} \left(-\cos \omega t \right) \rightarrow \frac{V_P}{\omega L} \sin \left(\omega t - \frac{\pi}{2} \right)$$

• From trigonometry:

$$-\cos\omega t = \sin\left(\omega t - \frac{\pi}{2}\right)$$

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages
- (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• The current through the inductor is

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

• The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

- The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.
 - Current lags behind the driving voltage by 90°.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of
 Inductive Reactance
 Adding up voltages
- Adding up voltages (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

- The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.
 - Current lags behind the driving voltage by 90°.
- ullet The peak current through the capacitor is $I_P=rac{V_P}{\omega\,L}$

AC Circuits

- Time Varying
 Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

- The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.
 - Current lags behind the driving voltage by 90°.
- ullet The peak current through the capacitor is $I_P=rac{V_P}{\omega\,L}$
 - $\circ~$ This resembles Ohm's Law with $I_P=rac{V_P}{\chi_L}$

AC Circuits

- Time Varying
 Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

- The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.
 - Current lags behind the driving voltage by 90°.
- ullet The peak current through the capacitor is $I_P=rac{V_P}{\omega\,L}$
 - \circ This resembles Ohm's Law with $I_P = rac{V_P}{\chi_L}$
 - \circ The term $\chi_L = \omega \, L$ has a unit of Ohm

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of
 Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

$$I(t) = \frac{V_P}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

- The current through the inductor is $\frac{\pi}{2}$ out of phase with the driving voltage.
 - Current lags behind the driving voltage by 90°.
- ullet The peak current through the capacitor is $I_P=rac{V_P}{\omega\,L}$
 - \circ This resembles Ohm's Law with $I_P = rac{V_P}{\chi_L}$
 - The term $\chi_L = \omega \, L$ has a unit of Ohm and is called inductive reactance (χ_L)

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of

Inductive Reactance

 Adding up voltages (currents) in AC circuits

Phasors

• The reactance for an inductor describes the behavior of a inductor placed in a circuit with a time-varying voltage source.

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of
- Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• The reactance for an inductor describes the behavior of a inductor placed in a circuit with a time-varying voltage source.

$$\chi_L = \omega L$$

• When ω is large, χ_L is large so the inductor offers greater "resistance" to current flow.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of
- Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• The reactance for an inductor describes the behavior of a inductor placed in a circuit with a time-varying voltage source.

$$\chi_L = \omega L$$

- When ω is large, χ_L is large so the inductor offers greater "resistance" to current flow.
- When ω is small, χ_L is small so the inductor offers less "resistance" to current flow.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of

Inductive Reactance

 Adding up voltages (currents) in AC circuits

Phasors

 The reactance for an inductor describes the behavior of a inductor placed in a circuit with a time-varying voltage source.

$$\chi_L = \omega L$$

- When ω is large, χ_L is large so the inductor offers greater "resistance" to current flow.
- When ω is small, χ_L is small so the inductor offers less "resistance" to current flow.
- χ_L is NOT the same as resistance because NO POWER IS DISSIPATED THROUGH A INDUCTOR.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

Phasors

• When several components are connected in *series*, their potential differences add.

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- When several components are connected in *series*, their potential differences add.
- When several components are connected in parallel, their currents add.

AC Circuits

- Time VaryingVoltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- When several components are connected in *series*, their potential differences add.
- When several components are connected in *parallel*, their currents add.
- Adding sines and cosines of differing amplitude and phases is algebraically awkward.

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- When several components are connected in *series*, their potential differences add.
- When several components are connected in parallel, their currents add.
- Adding sines and cosines of differing amplitude and phases is algebraically awkward.
 - We could graphically add up the potentials (or currents)

AC Circuits

- Time Varying Voltages and Inductors
- "Out-of-Phase?" for Inductor
- Inductive Reactance
- Properties of Inductive Reactance
- Adding up voltages (currents) in AC circuits

- When several components are connected in series, their potential differences add.
- When several components are connected in parallel, their currents add.
- Adding sines and cosines of differing amplitude and phases is algebraically awkward.
 - We could graphically add up the potentials (or currents)
 (THINK VECTORS).
 - This method for adding up potentials (or currents) is called "Phasor analysis"

AC Circuits

Phasors

Phasors

• Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

AC Circuits

Phasors

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

 \circ The phasor lies in the xy-plane with it tail fixed at the origin.

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

- \circ The phasor lies in the xy-plane with it tail fixed at the origin.
- \circ The amplitude of the vector is V_0 .

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

- \circ The phasor lies in the xy-plane with it tail fixed at the origin.
- \circ The amplitude of the vector is V_0 .
- \circ Time dependence is described by a *counterclockwise* rotation with angular speed ω .

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

- \circ The phasor lies in the xy-plane with it tail fixed at the origin.
- \circ The amplitude of the vector is V_0 .
- \circ Time dependence is described by a *counterclockwise* rotation with angular speed ω .
- \circ The function V(t) is the instantaneous projection of the phasor on the y-axis.

AC Circuits

Phasors

- Any quantity that has a harmonic time dependence can be associated with a *rotating* vector known as a **phasor**.
- For the function

$$V(t) = V_0 \sin(\omega t)$$

- \circ The phasor lies in the xy-plane with it tail fixed at the origin.
- \circ The amplitude of the vector is V_0 .
- \circ Time dependence is described by a *counterclockwise* rotation with angular speed ω .
- \circ The function V(t) is the instantaneous projection of the phasor on the y-axis.
- Click here for phasor animation.