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various closed loops.
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• I hope we are all comfortable finding the magnetic flux through

various closed loops.

• Let’s consider the following situation of two circular coils placed

near each other as shown in the figure below.

• Coil 1 has current passing through it (provided by an external

battery) and coil 2 is NOT connected to any battery source.
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• Φ2 ∝ I1

• Φ2 = M2,1I1 where M2,1 is a constant of proportionality

(called Mutual Inductance).

• If the current in circular loop 1 varies, then by Faraday’s Law of
Induction:

ε2 = −
d Φ2

dt

ε2 = −M2,1

d I1

dt

is the induced EMF in the circular loop 2.
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An electric toothbrush has no electrical connection to the power line.

But when the toothbrush is in its stand, a coil inside the toothbrush

itself rests inside another coil in the stand, and alternating current
from the power line flows in the stand coil. The mutual inductance of

the two coils results in an induced current in the toothbrush coil, and

this current charges the batteries that power the toothbrush. At a

given instant the emf in the toothbrush is 4.0V, and current in the

stand coil is changing at a rate of 40 A/s. What is the mutual

inductance of this arrangement?
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An electric toothbrush has no electrical connection to the power line.

But when the toothbrush is in its stand, a coil inside the toothbrush

itself rests inside another coil in the stand, and alternating current
from the power line flows in the stand coil. The mutual inductance of

the two coils results in an induced current in the toothbrush coil, and

this current charges the batteries that power the toothbrush. At a
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A rectangular loop of length l and width w is located a distance a
from a long, straight wire, as shown in the figure below. What is the

mutual inductance of this arrangement?

a

w
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We calculated the magnetic flux (ΦB) generated by the straight wire

carrying current I through the rectangular loop.
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• When we were discussing simple circuits (DirectCurrent)involving

a battery, a resistor, and a switch as shown below, we never

asked about the magnetic flux through the circuit generated by

the circuit.
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a magnetic flux through the area defined by the circuit.
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• When we were discussing simple circuits (DirectCurrent)involving

a battery, a resistor, and a switch as shown below, we never

asked about the magnetic flux through the circuit generated by

the circuit.

• The current in the circuit after the switch is “flipped” on produces
a magnetic flux through the area defined by the circuit.

• There is a changing magnetic flux through the circuit.

• This phenomena is termed “self-inductance”.
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• The magnetic flux produced by a circuit is directly proportional to

the current in the circuit.
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• The magnetic flux produced by a circuit is directly proportional to

the current in the circuit.

• The constant of proportionality is called the self-inductance

constant (L).

ΦB = LI

L ≡
ΦB

I
(All terms are produced by a single element.)

• The S.I. unit for self-inductance (L) is one Henry (H).

• An inductor is a device designed specifically to exhibit

self-inductance.
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• If the current in the circuit changes (as it would in the previous

slide when the switch is closed), then an induced EMF is

produced.



Self Inductance and Back EMF

Mutual Inductance

Self Inductance

• Self Inductance
• Self Inductance -
Inductors
• Self Inductance and
Back EMF

• Behavior of Inductors
• Increasing Currents
Through Inductors

• Decreasing Currents
Through Inductors

PHYS102 Inductance – slide 9

• If the current in the circuit changes (as it would in the previous

slide when the switch is closed), then an induced EMF is

produced.

ε = −
d ΦB

dt



Self Inductance and Back EMF

Mutual Inductance

Self Inductance

• Self Inductance
• Self Inductance -
Inductors
• Self Inductance and
Back EMF

• Behavior of Inductors
• Increasing Currents
Through Inductors

• Decreasing Currents
Through Inductors

PHYS102 Inductance – slide 9

• If the current in the circuit changes (as it would in the previous

slide when the switch is closed), then an induced EMF is

produced.

ε = −
d ΦB

dt

ε = −L
d I

dt



Self Inductance and Back EMF

Mutual Inductance

Self Inductance

• Self Inductance
• Self Inductance -
Inductors
• Self Inductance and
Back EMF

• Behavior of Inductors
• Increasing Currents
Through Inductors

• Decreasing Currents
Through Inductors

PHYS102 Inductance – slide 9
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ε = −
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• The induced EMF opposes the change in current which is why it

is often called “back EMF”.
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• If the current in the circuit changes (as it would in the previous

slide when the switch is closed), then an induced EMF is

produced.

ε = −
d ΦB

dt

ε = −L
d I

dt

• The induced EMF opposes the change in current which is why it

is often called “back EMF”.

• Calculating the self-inductance is typically very hard unless the

geometry is simple.
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• An inductor is represented symbolically by the following symbol

L

• If d I
dt

= 0, there is no EMF in the inductor, and the inductor acts

like a piece of wire.
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• Current is increasing over time through an inductor indicated

above.
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• Current is increasing over time through an inductor indicated

above.

• According to Lenz’s Law, the induced EMF will try to reduce the

increasing current so conceptually the inductor sets up a

“voltage” like the following picture.
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• Current is increasing over time through an inductor indicated
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• Current is decreasing over time through an inductor indicated

above.



Decreasing Currents Through Inductors

Mutual Inductance

Self Inductance

• Self Inductance
• Self Inductance -
Inductors
• Self Inductance and
Back EMF

• Behavior of Inductors
• Increasing Currents
Through Inductors

• Decreasing Currents
Through Inductors

PHYS102 Inductance – slide 12

• Current is decreasing over time through an inductor indicated

above.

• According to Lenz’s Law, the induced EMF will try to increase the

decreasing current so conceptually the inductor sets up a

“voltage” like the following picture.



Decreasing Currents Through Inductors

Mutual Inductance

Self Inductance

• Self Inductance
• Self Inductance -
Inductors
• Self Inductance and
Back EMF

• Behavior of Inductors
• Increasing Currents
Through Inductors

• Decreasing Currents
Through Inductors

PHYS102 Inductance – slide 12

• Current is decreasing over time through an inductor indicated

above.

• According to Lenz’s Law, the induced EMF will try to increase the

decreasing current so conceptually the inductor sets up a

“voltage” like the following picture.
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