PHYS102 DC-Circuits with Inductors

Dr. Suess

April 11, 2007

duction - Circuits	2
LR - Circuits	. 2
LR - Circuit Conceptually	. 3
LR - Circuit Conceptually	. 4
nalysis	5
LR Circuits - Kirchhoff's Rules	. 5
Mathematical Equation for Current	. 6
Current as a Function of Time	. 7
Inductive Time Constant	. 8
FMF Through Inductor - Graphing	О

0.1 LR - Circuits - General

LR - Circuits

- We already analyzed the behavior of a solenoid with increasing and decreasing currents.
- Let's now look at circuit containing a resistor and an inductor.
- The circuit still has a direct-current (DC) source i.e., a battery.
- A switch will be used to increase or decrease current through the circuit.

PHYS102

Circuits with Inductors - slide 2

LR - Circuit Conceptually

- The magnetic flux through the circuit is initially zero (No current flows in the circuit).
- As soon as the switch is thrown into position

 (a), a current begins to flow so a magnetic flux
 through the circuit now exists.
- Initially, the inductor behaves like an infinite resistor "opposes the change in current".
 PHYS102

Circuits with Inductors - slide 3

LR - Circuit Conceptually

Continuation from last slide.

- After some time, the current in the circuit reaches an equilibrium value.
 - \circ The inductor behaves like a piece of wire ($\varepsilon_L=0$ since $\frac{\mathrm{d}I}{\mathrm{d}t}=0$.)

PHYS102

Circuits with Inductors - slide 4

0.2 Ramping Current

LR Circuits - Kirchhoff's Rules

• Begin by applying Kirchhoff's rules to the closed circuit.

$$-IR - |\varepsilon_L| + V = 0.$$

$$|\varepsilon_L| = L \frac{\mathrm{d}I}{\mathrm{d}t}$$

PHYS102

Circuits with Inductors - slide 5

Mathematical Equation for Current $_{\rm a}$

Continuation from last slide.

$$\Rightarrow V/R = I + L/R \, \frac{\mathrm{d}I}{\mathrm{d}t}$$

$$\Rightarrow \frac{\mathrm{d}I}{(I-V/R)} = -\frac{R\,\mathrm{d}t}{L}$$

$$\frac{\text{PHYS102}}{\Rightarrow \int \frac{\mathrm{d}I}{(I-V/R)} = -\int \frac{R\,\mathrm{d}t}{L}}$$

Circuits with Inductors - slide 6

Current as a Function of Time

· Continuation from last slide.

$$\Rightarrow \int \frac{\mathrm{d}I}{(I-V/R)} = -\int \frac{R\,\mathrm{d}t}{L}$$

$$I = \frac{V}{R} \left(1 - e^{-Rt/L} \right)$$

PHYS102

Circuits with Inductors - slide 7

Inductive Time Constant

Continuation from last slide.

$$I = \frac{V}{R} \left(1 - e^{-Rt/L} \right)$$

$$I = \frac{V}{R} \left(1 - e^{-t/\tau_L \tau_L} \right) \qquad \text{(where } \tau_L \equiv L/R \text{)(where } \tau_L \equiv L/R \text{)}$$

PHYS102 Circuits with Inductors – slide 8 $\tau_L \tau_L$ is called the "inductive" time constant "inductive" time constant for the circuit.

0.3 Graphing Current and EMF

EMF Through Inductor - Graphing $I_{(t)} = V/R$ $\tau_{L} = L/R$ $I(t) = \frac{V}{R} \left(1 - e^{-Rt/L}\right)$

• The current through the inductor builds up over PHY66140Qust like we stated conceptually).

Circuits with Inductors - slide 9

• What happens to the EMF in the inductor?