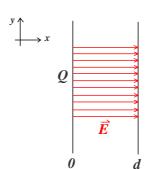
PHYS102 - Capacitors

Dr. Suess

February 16, 2007


Capacitors	2
Capacitors	2
Capacitors II	3
Capacitors II	
Calculating Capacitance	5
Calculating Capacitance II	
Energy	7
Capacitance and Energy	7
Symbols	8
Circuit Symbols	8
Circuits	g
Circuits	
Capacitors in Parallel	
Capacitors in Parallel II	
Capacitors in Parallel III	12
Capacitors in Series	13
Capacitors in Series II	14
Capacitors in Series III	
Capacitors in Series IV	16
Capacitors in Series V	17
SUMMARY	
Dielectrics	10

0.1 Parallel plate example

Capacitors

- When using a pair of conductors to store energy, we term the pair of conductors a capacitor. capacitor.
- Capacitors typically used to store shorttermshort-term electrical energy.
- Consider our previous example:

$$|\Delta V| = \frac{Q d}{\varepsilon_0 A} \to |\Delta V| \propto Q$$
$$|\Delta V| = Q \left(\frac{d}{\varepsilon_0 A}\right)$$

Q

 \vec{E}

Capacitors - slide 2 PHYS102

Capacitors II

$$|\Delta V| = Q\left(\frac{d}{\varepsilon_0 A}\right)$$

Rewriting to find the amount of charge

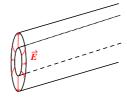
$$Q = |\Delta V| \left(\frac{\varepsilon_0 A}{d}\right) \to \frac{Q}{|\Delta V|} = \frac{\varepsilon_0 A}{d}$$

- Notice that the ratio Q/V depends only the geometry of the specific problem.
- The ratio $C \equiv Q/V$ is termed the capacitance.

0.2 Capacitance

Capacitors II

- lacktriangledown C is a measure of the capacity to store charge for a given potential difference across two conductors.
- The unit of capacitance is one "Farad".


$$[C] = rac{[Q]}{[V]} = 1$$
C $/$ 1 V $\equiv 1$ Farad

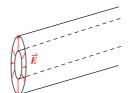
■ 1 Farad is a very large value, and typical values of capacitance are:pF, nF, and μ F.Note: 1 miliFarad is also large.

PHYS102 Capacitors – slide 4

Calculating Capacitance

- Calculate the capacitance for a long coaxial cable of length L. Represent the cable as two concentric cylindrical conductors with radii a and b (b > a) as shown on the right.
 - $lack \$ Let the inner conductor carry a charge +Q uniformly distributed over its length.

$$\Delta V_{ba} = -\int_{b}^{a} \vec{E} \cdot d\vec{l}$$
$$\vec{E}(a < r < b) = \frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{r}$$


PHYS102
$$\Rightarrow \Delta V_{ba} = \frac{Q}{2\pi \varepsilon_0 L} \ln(b/a) \rightarrow \Delta V_{ba} > 0.$$

Capacitors - slide 5

Calculating Capacitance II

$$\Delta V_{ba} = \frac{Q}{2 \pi \varepsilon_0 L} \ln(b/a)$$
$$\Rightarrow C = Q/V = \frac{2 \pi \varepsilon_0 L}{\ln(b/a)}$$

■ The capacitance of a coaxial cable varies as the length of the cable varies. This is a very important result for many experiments.

■ It is convenient to talk about the capacitance per unit length for a coaxial cable.

$$\mathrm{PHYS102} C/L = \frac{2\,\pi\,\varepsilon_0}{\ln(b/a)}$$

0.3 Capacitance

Capacitance and Energy

lacktriangle We can rewrite the energy required to charge a conductor to final charge Q in terms of capacitance and potential difference between the two surfaces of a capacitor.

$$U=\int dU=\int_0^Q V\,dq=\int_0^Q q/C\,dq \quad \mbox{(where V = q/C.)}$$

$$U=\frac{Q^2}{2\,C}=\frac{Q\,V}{2}=\frac{C\,V^2}{2}$$

■ The three equations above are equivalent since $C \equiv Q/V$.

PHYS102 Capacitors – slide 7

Symbols slide 8

0.4 Circuit Diagrams

Circuit Symbols

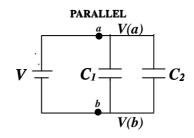
- Typically, one uses a combination of capacitors in an electric circuit (to store electric energy).
- We need to define symbols which will represent capacitors and batteries (very common in everyday electric circuits).
- The figure on the right (two parallel lines of equal length) will be used to represent a capacitor.
- The next figure on the right will be used to represent a battery (Notice the long and short sides).
 - ◆ The long side of the battery represents the side of a battery which is at a higher potential (i.e., +).
- ◆ The short side of the battery represents the end of PHYS102he batter which is lower in potential (i.e., -).

Circuits slide 9

0.5 Capacitors only

Circuits

■ We begin circuits with a circuit diagram (a map of how we want to connect our components).

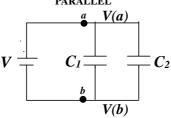

- Assumptions:
 - ◆ The components in our circuit will be connected by perfectly conducting wires.
 - ◆ The battery is an ideal battery unless otherwise stated.
 - The purpose of a battery is to maintain constant potential difference between the two ends of the battery at all costs.
- Let's begin.

PHYS102 Capacitors – slide 9

0.6 Parallel Circuit

Capacitors in Parallel

- When placing two or more components as shown in the figure on the right, we term the assembly a *PARALLEL* circuit.
- The top of the capacitors are connected to the top of the battery.
- The bottom of the capacitors are connected to the bottom of the battery.
- lacktriangle The difference in potential between the top and bottom of the battery is V.
- This means that the potential difference across C_1 and C_2 is the same and is PH given by the V.

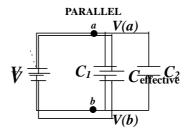

Capacitors in Parallel II

■ This means that the potential difference across C_1 and C_2 is the same and is given by the V.

$$\Delta V_{ba} = V(a) - V(b) = V$$
 (The potential difference of the battery)
 $\Rightarrow Q_1 = C_1 \, V$ & $Q_2 = C_2 \, V$

■ The total charge over the two capacitors must be the charge supplied by the battery!

$$\begin{aligned} Q_T &= Q_1 + Q_2 \\ C_T \, V_T &= C_1 \, V_1 + C_2 \, V_2 \\ \text{PHYS102} C_T \, V_T &= V \left(C_1 + C_2\right) \end{aligned}$$


Capacitors - slide 11

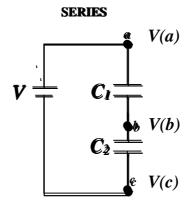
Capacitors in Parallel III

$$C_T V_T = V (C_1 + C_2) \Rightarrow C_T V = V (C_1 + C_2)$$

 $C_T = (C_1 + C_2)$

- This means that the entire circuit may be represented as a single capacitor $(C_{\text{effective}})$ as shown on the right
- \blacksquare where $C_{\text{effective}} = C_1 + C_2$.
- If we generalize for capacitors connected in parallel:

$$C_{ ext{effective}} = C_1 + C_2 + C_3 + \cdots$$


PHYS102

0.7 Series Circuit

Capacitors in Series

- When placing two or more components as shown in the figure on the right, we term the assembly a *SERIES* circuit.
- The capacitors are connected "back-to-back".
- The bottom of one plate is connected by the same wire to the top of the other plate.
- If we label points along the circuit as in the diagram, we can discuss the potential difference across the points.

PHYS10 \overline{b} he difference in potential between points c and a is the potential dif-

Capacitors - slide 13

ference, V, of the battery

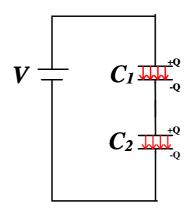
Capacitors in Series II

The difference in potential between points c and a is the potential difference, V, of the battery.

$$\Delta V_{ca} = V(a) - V(c) = V$$

$$\Delta V_{ba} = V(a) - V(b)$$

$$\Delta V_{cb} = V(b) - V(c)$$


$$\Delta V_{ca} = \Delta V_{ba} + \Delta V_{cb}$$

lacktriangle ΔV_{ba} is the potential difference across capacitor C_1 , and ΔV_{cb} is the potential difference across capacitor C_2 . PHYS102

Capacitors in Series III

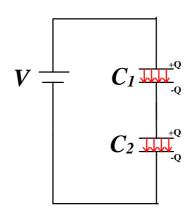
- There is a potential difference across C_1 .
- The electric field in C_1 does something to the wire connecting C_1 with C_2 (What is it?).
- The same magnitude of charge will develop on the top plate of C_2 (due to conservation of charge).
- This charge will create an electric field (but we already knew that from the previous slide) which will induce a -Q on the bottom plate.
- ■HYGORAL OF THE STORY: Capacitors in series have the same amount of charge!

SERIES

Capacitors - slide 15

Capacitors in Series IV

■ Starting with:


$$V = V_1 + V_2 = \frac{Q_1}{C_1} + \frac{Q_2}{C_2}$$

$$V = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right)$$

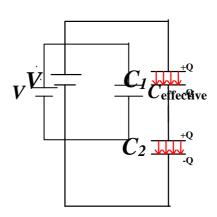
$$V/Q = (\frac{1}{C_1} + \frac{1}{C_2})$$

$${\rm PHYS102}^{1/C} = (\frac{1}{C_1} + \frac{1}{C_2})$$

SERIES

Capacitors - slide 16

Capacitors in Series V


$$1/C = (\frac{1}{C_1} + \frac{1}{C_2})$$

- This means that the circuit on the right can be represented by the following circuit.
- Where $1/C_{\text{effective}} = 1/C_1 + 1/C_2$:
- If we generalize for capacitors connected in series:

$$\frac{1}{C_{\text{effective}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

PHYS102

SERIES

SUMMARY

- Parallel circuits:
 - ◆ Elements in parallel reside at the same potential.
 - ◆ For capacitors in parallel, you need to add the capacitance of each capacitor in order to find the effective capacitance.
- Series circuits:
 - ◆ Capacitors in series have identical charges.
 - ◆ For capacitors in series, you need to add the *reciprocal* of the capacitance of each capacitor in order to find the *reciprocal* of the effective capacitance.

PHYS102 Capacitors – slide 18

Dielectrics

Let's move to the chalk board.

PHYS102 Capacitors – slide 19