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m This equation is “specific’ to a parallel Q
plate assembly.

m This energy stored is related to the E-

. E
field between the plates.
0 We can solve () in terms of the elec- 0 d
tric field magnitude.
_Q L .
E=— (Final field strength once @ deposited.)
AEEO

SQ? = A2 B
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m If the electric field is not constant (like that for a point particle), then one
needs to calculate dU for a very small region of space, dV where the electric
field is uniform.

dU:uEdV
1
U:/dU:/§eoE2dV

PHYS102 - % « » [ x Electric Energy — slide 9




- Calculating Energy from Electric Field Il '
Capacitors

1
U:/dU:/§eoE2dv

m  Where the integration limits are over region of space where the electric field
exists.

m Let's look at an example.

PHYS102 - % « » [ x Electric Energy — slide 10



- Example - Energy and uniform E-field '
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Consider a typical thundercloud that rises to an altitude of 10 km and has a
diameter of 20 km. Assuming an average electric field strength of 10° V/m,
estimate the total electrostatic energy stored in the cloud.

Solution

The energy density is given by:

1 1
up = 7 €0 18" = 5 (8.85 x 10712C2/Nm?)(10°V/m)?

=44 x 1072J/m3

We assume that the energy density is the same throughout the storm, so:
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energy, we term the pair of conductors a ‘ y
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m  When using a pair of conductors to store
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energy, we term the pair of conductors a ‘ y
capacitor.

m (Capacitors typically used to store short- Q
term electrical energy.

m Consider our previous example:

5
~ Qd
Avi= 29— jav]xQ ; !
d
AV =Q (-
AV] Q(gOA)
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d VL
av1=Q (5) X
m  Rewriting to find the amount of charge Q
Q.
E
0 d
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p y
AV| = — LX
avi=Q (-5)
m  Rewriting to find the amount of charge Q
Q.
A —
Q = |AV (—eod ) =
0 d
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d
AV = —
avi=Q (-5)
m  Rewriting to find the amount of charge
Q.
€0A Q €0A
== A > -
Q=1avI (%) = v =
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] y
AV | = — LX
avi=Q (-5)
m  Rewriting to find the amount of charge Q
Q.
€0A Q €0A E
p— A > =S
Q=1avI (%) = v =
0 d

m  Notice that the ratio Q/V depends only
the geometry of the specific problem.
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Capacitors

] y
AV | = — LX
avi=Q (-5)
m  Rewriting to find the amount of charge Q
Q.
€0A Q €0A E
p— A > =S
Q=1avI (%) = v =
0 d

m  Notice that the ratio Q/V depends only
the geometry of the specific problem.

m The ratio C = @Q/V is termed the ca-
pacitance.
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m (' is a measure of the capacity to store charge for a given potential difference
across two conductors.
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Capacitors

m (' is a measure of the capacity to store charge for a given potential difference
across two conductors.

m [he unit of capacitance is one “Farad”.

—@: = 1Fara
[C]_[V] 1C /1 V = 1Farad

m 1 Farad is a very large value, and typical values of capacitance are:pF, nF,
and pF.Note: 1 miliFarad is also large.
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- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

mj

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

AVba:—/ E - dl
b

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

mj

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

AViy=— | E -dl
b
Ela<r<b) = A &

_27T80T

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

mj

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

AVpy = — E - dl
b
Ela<r<b) = A &
_27T80T
= AVp, = @ In(b/a)
27T80L

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

mj

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

AVip, = — E - dl
b
Ela<r<b) = A &
_27T80T
Q
= AV, = In(b AViq :
° 2meg L n(b/a) = AVba >0

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance -
Capacitors

m (Calculate the capacitance for a long
coaxial cable of length L. Represent the
cable as two concentric cylindrical con-
ductors with radii @ and b (b > a) as
shown on the right.

mj

[0 Let the inner conductor carry a
charge +() uniformly distributed
over its length.

a

AVy=— [ E-d
b
Ela<r<b) = A &
_27T80T
Q
= AV, = In(b AViq :
° 2meg L b)) = BV, >0

PHYS102 - % « » [ x Electric Energy — slide 15



- Calculating Capacitance || -
Capacitors

@
AVio = 5= In(b/a)

mj

PHYS102 - % « » [ x Electric Energy — slide 16



- Calculating Capacitance || -
Capacitors

@
AVio = 5= In(b/a)

2T €0 L
In(b/a)

= C=Q/V =

mj

PHYS102 - % « » [ x Electric Energy — slide 16



- Calculating Capacitance || -
Capacitors

@
AVio = 5= In(b/a)

2T €0 L
In(b/a)

= C=Q/V =

mj

m [he capacitance of a coaxial cable varies
as the length of the cable varies.
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