Continuous Charged Objects

- If the electric field is not known (or you are not sure how to find the electric field) for a continuous charged object, then we apply the superposition principle for all the charges making up the object in question.

Continuous Charged Objects

- If the electric field is not known (or you are not sure how to find the electric field) for a continuous charged object, then we apply the superposition principle for all the charges making up the object in question.

Continuous Charged Objects

- If the electric field is not known (or you are not sure how to find the electric field) for a continuous charged object, then we apply the superposition principle for all the charges making up the object in question.
- Breaking up the charged object into small portions of charge $d q$:

Continuous Charged Objects

- If the electric field is not known (or you are not sure how to find the electric field) for a continuous charged object, then we apply the superposition principle for all the charges making up the object in question.
- Breaking up the charged object into small portions of charge $d q$:

$$
d V=\frac{k d q}{r}
$$

Continuous Charged Objects

- If the electric field is not known (or you are not sure how to find the electric field) for a continuous charged object, then we apply the superposition principle for all the charges making up the object in question.
- Breaking up the charged object into small portions of charge $d q$:

$$
\begin{aligned}
& d V=\frac{k d q}{r} \\
& V=\int_{\text {Body }} d V=\int \frac{k d q}{r}
\end{aligned}
$$

Reminder

Differences in potential energy - and thus in electric potential - have physical significance.

Reminder

■ Differences in potential energy - and thus in electric potential - have physical significance.

- A reference potential is needed!

Reminder

- Differences in potential energy - and thus in electric potential - have physical significance.
- A reference potential is needed!

■ Let's work out an example with a few different objects.

Example - Power Line

A long, straight power line is made from wire with radius $r_{A}=1.0 \mathrm{~cm}$ and carries a line charge density $\lambda=2.6 \mu C / m$ as shown in the figure on the right. Assuming no other charges are present, what is the potential difference between the surface of the wire and the ground, a distance $r_{B}=22 \mathrm{~m}$ below?

Example - Power Line

- A long, straight power line is made from wire with radius $r_{A}=1.0 \mathrm{~cm}$ and carries a line charge density $\lambda=2.6 \mu \mathrm{C} / \mathrm{m}$ as shown in the figure on the right. Assuming no other charges are present, what is the potential difference between the surface of the wire and the ground, a distance $r_{B}=22 \mathrm{~m}$ below?
i. Treat the wire as a very long wire, and apply Gauss's law to find the electric field:

Example - Power Line

- A long, straight power line is made from wire with radius $r_{A}=1.0 \mathrm{~cm}$ and carries a line charge density $\lambda=2.6 \mu \mathrm{C} / \mathrm{m}$ as shown in the figure on the right. Assuming no other charges are present, what is the potential difference between the surface of the wire and the ground, a distance $r_{B}=22 \mathrm{~m}$ below?
i. Treat the wire as a very long wire, and apply Gauss's law to find the electric field:

$$
\mathbf{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \quad\left(r>r_{A}\right)
$$

Example - Power Line II

ii. Use the definition of potential difference.

Example - Power Line II

ii. Use the definition of potential difference.

$$
\Delta V_{A B}=-\int_{r_{A}}^{r_{B}} \vec{E} \cdot d \vec{l}
$$

Example - Power Line II

ii. Use the definition of potential difference.

$$
\begin{aligned}
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \vec{E} \cdot d \vec{l} \\
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} d r
\end{aligned}
$$

Example - Power Line II

ii. Use the definition of potential difference.

$$
\begin{aligned}
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \vec{E} \cdot d \vec{l} \\
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} d r \\
\Delta V_{A B} & =-\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{r_{A}}^{r_{B}} \frac{d r}{r}
\end{aligned}
$$

Example - Power Line II

ii. Use the definition of potential difference.

$$
\begin{aligned}
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \vec{E} \cdot d \vec{l} \\
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} d r \\
\Delta V_{A B} & =-\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{r_{A}}^{r_{B}} \frac{d r}{r} \\
& =\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{A}}{r_{B}}\right)
\end{aligned}
$$

Example - Power Line II

ii. Use the definition of potential difference.

$$
\begin{aligned}
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \vec{E} \cdot d \vec{l} \\
\Delta V_{A B} & =-\int_{r_{A}}^{r_{B}} \frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} d r \\
\Delta V_{A B} & =-\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{r_{A}}^{r_{B}} \frac{d r}{r} \\
& =\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{A}}{r_{B}}\right)
\end{aligned}
$$

$$
\Delta V=-360 \mathrm{kV}
$$

Example - Power Line III

The potential difference is negative.

Example - Power Line III

The potential difference is negative.WHY?

Example - Power Line III

The potential difference is negative.WHY?

- Moving a positive charge q from r_{A} to r_{B}, would require a force opposite to the displacement.

Example - Power Line III

■ The potential difference is negative.WHY?

- Moving a positive charge q from r_{A} to r_{B}, would require a force opposite to the displacement.
- Moving a negative charge $-q$ from r_{A} to r_{B}, would require a force in the direction of the displacement.

Example - Power Line III

■ The potential difference is negative.WHY?

- Moving a positive charge q from r_{A} to r_{B}, would require a force opposite to the displacement.
- Moving a negative charge $-q$ from r_{A} to r_{B}, would require a force in the direction of the displacement.

This is all summed up with the equation:

Example - Power Line III

■ The potential difference is negative.WHY?

- Moving a positive charge q from r_{A} to r_{B}, would require a force opposite to the displacement.
- Moving a negative charge $-q$ from r_{A} to r_{B}, would require a force in the direction of the displacement.

- This is all summed up with the equation:

$$
W=q \Delta V \quad \text { with } \Delta V=-360 \mathrm{kV}
$$

Example - Assembling Charges

- Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

Example - Assembling Charges

■ Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

Example - Assembling Charges

■ Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

■ Let's assemble the bottom left charge ($+e$) first.

Example - Assembling Charges

- Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

Let's assemble the bottom left charge ($+e$) first.

- Since there is no electric field initially, $W_{e L}=0$.

Example - Assembling Charges

- Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

Let's assemble the bottom left charge ($+e$) first.

- Since there is no electric field initially, $W_{e L}=0$.
- This charge sets up a electric potential, $V_{1}=\frac{k e}{r}$

Example - Assembling Charges

■ Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

■ Let's assemble the bottom left charge ($+e$) first.

- Since there is no electric field initially, $W_{e L}=0$.
- This charge sets up a electric potential, $V_{1}=\frac{k e}{r}$
- Assemble the $-2 e$ charge next. This charge interacts with the potential generated by e, V_{1}.

Example - Assembling Charges

- Calculate the amount of work (energy) needed to assemble the three charges above (which is a crude approximation to the water molecule).

Let's assemble the bottom left charge ($+e$) first.

- Since there is no electric field initially, $W_{e L}=0$.
- This charge sets up a electric potential, $V_{1}=\frac{k e}{r}$
- Assemble the $-2 e$ charge next. This charge interacts with the potential generated by e, V_{1}.
- $W_{2 e}=-2 e V_{1}\left(r_{1}\right)=-2 e \frac{k e}{r_{1}}=-\frac{2 k e^{2}}{r_{1}}$

Example - Assembling Charges II

- Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.

Example - Assembling Charges II

Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.

- $V_{1}=\frac{k e}{r}$ and $V_{2}=-\frac{2 k e}{r}$.

Example - Assembling Charges II

- Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.
- $V_{1}=\frac{k e}{r}$ and $V_{2}=-\frac{2 k e}{r}$.

■ $W_{e R}=e\left(V_{1}\left(r_{2}\right)+V_{2}\left(r_{3}\right)\right)=\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}$

Example - Assembling Charges II

- Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.
- $V_{1}=\frac{k e}{r}$ and $V_{2}=-\frac{2 k e}{r}$.

■ $W_{e R}=e\left(V_{1}\left(r_{2}\right)+V_{2}\left(r_{3}\right)\right)=\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}$
■ The total work required to assemble the charges in the configuration above is the sum of the above energies:

Example - Assembling Charges II

- Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.
- $V_{1}=\frac{k e}{r}$ and $V_{2}=-\frac{2 k e}{r}$.

■ $W_{e R}=e\left(V_{1}\left(r_{2}\right)+V_{2}\left(r_{3}\right)\right)=\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}$

- The total work required to assemble the charges in the configuration above is the sum of the above energies:

$$
W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}
$$

Example - Assembling Charges II

- Assemble the last charge, $+e$ on the right hand side. This charge interacts with the two potentials, V_{1} and V_{2}, set up by the two other charges.
- $V_{1}=\frac{k e}{r}$ and $V_{2}=-\frac{2 k e}{r}$.

■ $W_{e R}=e\left(V_{1}\left(r_{2}\right)+V_{2}\left(r_{3}\right)\right)=\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}$
The total work required to assemble the charges in the configuration above is the sum of the above energies:

$$
W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}=0-\frac{2 k e^{2}}{r_{1}}+\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}
$$

Example - Assembling Charges III

Potentials from Charged Objects Potential Difference and the Electric Field

- Sum all the energies to find the total work required to assemble the charges.

Example - Assembling Charges III

Potentials from Charged Objects Potential Difference and the Electric Field

- Sum all the energies to find the total work required to assemble the charges.

$$
W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}=0-\frac{2 k e^{2}}{r_{1}}+\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}}
$$

Example - Assembling Charges III

- Sum all the energies to find the total work required to assemble the charges.

$$
\begin{aligned}
& W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}=0-\frac{2 k e^{2}}{r_{1}}+\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}} \\
& W_{\text {Total }}=k e^{2}\left(-\frac{2}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{r_{3}}\right) \quad \text { with } r_{1}=r_{3}=0.1 \mathrm{~nm}
\end{aligned}
$$

Example - Assembling Charges III

- Sum all the energies to find the total work required to assemble the charges.

$$
\begin{aligned}
& W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}=0-\frac{2 k e^{2}}{r_{1}}+\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}} \\
& W_{\text {Total }}=k e^{2}\left(-\frac{2}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{r_{3}}\right) \quad \text { with } r_{1}=r_{3}=0.1 \mathrm{~nm} \\
& W_{\text {Total }}=-7.76 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Example - Assembling Charges III

- Sum all the energies to find the total work required to assemble the charges.

$$
\begin{aligned}
& W_{\text {Total }}=W_{e L}+W_{2 e}+W_{e R}=0-\frac{2 k e^{2}}{r_{1}}+\frac{k e^{2}}{r_{2}}-\frac{2 k e^{2}}{r_{3}} \\
& W_{\text {Total }}=k e^{2}\left(-\frac{2}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{r_{3}}\right) \quad \text { with } r_{1}=r_{3}=0.1 \mathrm{~nm} \\
& W_{\text {Total }}=-7.76 \times 10^{-18} \mathrm{~J}=-48.5 \mathrm{eV}
\end{aligned}
$$

Units

■ On the last slide, we calculated a very small amount of energy in Joules. A more convenient unit of energy when dealing with atoms or molecules is the electron-Volt (eV) which is the amount of energy gained by a charge (e) passing through a potential difference of 1 V :

Units

■ On the last slide, we calculated a very small amount of energy in Joules. A more convenient unit of energy when dealing with atoms or molecules is the electron-Volt (eV) which is the amount of energy gained by a charge (e) passing through a potential difference of 1 V :

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

$$
d V=-\vec{E} \cdot d \vec{l}
$$

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

$$
d V=-\vec{E} \cdot d \vec{l}=-E_{l} d l
$$

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

$$
\begin{aligned}
& d V=-\vec{E} \cdot d \vec{l}=-E_{l} d l \\
& E_{l}=-\frac{d V}{d l}
\end{aligned}
$$

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

$$
\begin{aligned}
& d V=-\vec{E} \cdot d \vec{l}=-E_{l} d l \\
& E_{l}=-\frac{d V}{d l}
\end{aligned}
$$

Potential Difference and \vec{E}-field

■ Since the electric field and the potential difference are related by:

$$
\begin{aligned}
& d V=-\vec{E} \cdot d \vec{l}=-E_{l} d l \\
& E_{l}=-\frac{d V}{d l} \quad \text { (where } E_{l} \text { is the component of the electric field parallel to } l \text {) }
\end{aligned}
$$

