PHYS102 - Gauss's Law.

Dr. Suess

February 2, 2007

Question #1

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question
 #4

Conductors

Consider the Gaussian surface of a cube which encloses a charge of +q that is located in the exact middle of the cube. What is the electric flux through one side of the cube?

- 0.
 q/ε₀
- 3. $q/6 \varepsilon_0$

4. There is enough information, but none of the above are correct.

5. There is not enough information.

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question

#3

- Question #4
- Answer to Question

#4

The electric flux is given by $\Phi = rac{Q_{enclosed}}{arepsilon_0}$.

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Since the charge q is located in the center of the cube, then each face of the cube will have the same number of field lines passing through its surface.

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
 - Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Since the charge q is located in the center of the cube, then each face of the cube will have the same number of field lines passing through its surface.
- Each face will contribute the same of amount of electric flux (and there are 6 faces to the cube).

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
 - Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = +q$).
- Since the charge q is located in the center of the cube, then each face of the cube will have the same number of field lines passing through its surface.
- Each face will contribute the same of amount of electric flux (and there are 6 faces to the cube).
- The answer is 3.

Question #2

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

Conductors

1. 0. 2. $-q/\varepsilon_0$ 3. q/ε_0

- 4. $2q/\varepsilon_0$
- 5. There is not enough symmetry to answer the question.

PRS Questions

- Question #1
- Answer to Question

#1

- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question
- #3
- Question #4
- Answer to Question

#4

The electric flux is given by $\Phi = rac{Q_{enclosed}}{arepsilon_0}$.

PRS Questions

- Question #1
- Answer to Question #1
- ----
- Question #2 Answer to Question
- #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4
- Conductors

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = -2q + q$).

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question
- #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question
 #4
- Conductors

- The electric flux is given by $\Phi = \frac{Q_{enclosed}}{\varepsilon_0}$.
- Q is the amount of charge contained inside the closed surface (in this case $Q_{enclosed} = -2q + q$).
- The answer is 2.

Question #3

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

Conductors

A net charge of
$$+Q$$
 is transferred to a spherical *conducting* shell of inner radius a and outer radius b. A charge $(-7q)$ is placed in the center of the shell. What is the charge on the inside of the conducting shell?

PHYS102

PRS Questions

- Question #1
- Answer to Question #1
- #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question

#3

- Question #4
- Answer to Question

#4

Conductors

• The charge located in the center (-7q) will attract positive (repelnegative) charges within the conductor.

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question
- #3
- Question #4
- Answer to Question
 #4

- The charge located in the center (-7q) will attract positive (repelnegative) charges within the conductor.
- A total charge of +7q will be attracted to the center charge to try to "neutralize" its presence.

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question
- #2
- Question #3
- Answer to Question
- #3
- Question #4
- Answer to Question
 #4

- The charge located in the center (-7q) will attract positive (repelnegative) charges within the conductor.
- A total charge of +7q will be attracted to the center charge to try to "neutralize" its presence.
- The answer 3.

Question #4

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question
- #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

A net charge of
$$+Q$$
 is transferred to a spherical **conducting** shell of inner radius a and outer radius b. A charge $(-7q)$ is placed in the center of the shell. What is the charge on the outside of the conducting shell?

PRS Questions

- Question #1
- Answer to Question #1
- #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4
- Conductors

• From the previous question, we know that the inner surface of the conductor has a charge 7q.

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- From the previous question, we know that the inner surface of the conductor has a charge 7q.
- The net charge on the conductor is Q, but 7q is already distributed to the inner surface

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question

#2

- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- From the previous question, we know that the inner surface of the conductor has a charge 7q.
- The net charge on the conductor is Q, but 7q is already distributed to the inner surface so the outer surface must have a charge of Q 7q.

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question
- #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

- From the previous question, we know that the inner surface of the conductor has a charge 7q.
- The net charge on the conductor is Q, but 7q is already distributed to the inner surface so the outer surface must have a charge of Q 7q.
 - The answer 5.

PRS Questions

- Question #1
- Answer to Question #1
- Question #2
- Answer to Question
- #2
- Question #3
- Answer to Question #3
- Question #4
- Answer to Question #4

Conductors

- From the previous question, we know that the inner surface of the conductor has a charge 7q.
- The net charge on the conductor is Q, but 7q is already distributed to the inner surface so the outer surface must have a charge of Q 7q.
 - The answer 5.

NOTE: The sum of charges over the inner surface and the outer surface of the conductor must be equal to the total net charge on the conductor.

Conductors in Electric Fields

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

Summary

 A conductor allows electrons to flow quasi-freely throughout it whereas an insulator restricts the flow of electrons.

Conductors in Electric Fields

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- A conductor allows electrons to flow quasi-freely throughout it whereas an insulator restricts the flow of electrons.
- Placing a metal in an external electric field causes the charges throughout the metal to redistribute themselves as in the figure to the right. (NOTE: The time taken to redistribute is much less than one microsecond.)

Conductors in Electric Fields

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- A conductor allows electrons to flow quasi-freely throughout it whereas an insulator restricts the flow of electrons.
- Placing a metal in an external electric field causes the charges throughout the metal to redistribute themselves as in the figure to the right. (NOTE: The time taken to redistribute is much less than one microsecond.)
 - No net motion of charge implies that the conductor is in electrostatic equilibrium.

Conductors in Electric Fields II

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

Summary

• The charges within the conductor arrange in such a way as to produce no electric field within the conductor.

Conductors in Electric Fields II

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

Conductors -

- The charges within the conductor arrange in such a way as to produce no electric field within the conductor.
 - The electric field generated by the separation of charges adds against the external field yielding no net electric field within the conductor.

Conductors in Electric Fields II

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

Conductors -

- The charges within the conductor arrange in such a way as to produce no electric field within the conductor.
 - The electric field generated by the separation of charges adds against the external field yielding no net electric field within the conductor.
- Question: What happens when a net charge is deposited on a neutral conductor?

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

Summary

• The excess charge placed on the conductor will experience a repulsive Coulomb force.

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- The excess charge placed on the conductor will experience a repulsive Coulomb force.
 - The charges will experience an acceleration (causing the charges to move).

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- The excess charge placed on the conductor will experience a repulsive Coulomb force.
 - The charges will experience an acceleration (causing the charges to move).
 - After a very short ($t \approx 10^{-9}$ s) time, the charges will push each other as far as possible and stop moving.

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- The excess charge placed on the conductor will experience a repulsive Coulomb force.
 - The charges will experience an acceleration (causing the charges to move).
 - After a very short ($t \approx 10^{-9}$ s) time, the charges will push each other as far as possible and stop moving.
 - How far can the charges move?

PRS Questions

Conductors

• Conductors in Electric Fields

• Conductors in Electric Fields II

• Charging a Conductor

• Conductors -

- The excess charge placed on the conductor will experience a repulsive Coulomb force.
 - The charges will experience an acceleration (causing the charges to move).
 - After a very short ($t \approx 10^{-9}$ s) time, the charges will push each other as far as possible and stop moving.
 - How far can the charges move?Answer: to the surface of the conductor.

Conductors - Summary

PRS Questions

- Conductors
- Conductors in Electric Fields
- Conductors in Electric Fields II
- Charging a Conductor
- Conductors -

- Any net excess charge on a conductor will reside on its surface.
- The electric field within a conductor is zero.
- The electric field immediately outside a conductor must be perpendicular to the conductor's surface.

Conductors - Summary

PRS Questions

- Conductors
- Conductors in Electric Fields
- Conductors in Electric Fields II
- Charging a Conductor
- Conductors -

- Any net excess charge on a conductor will reside on its surface.
- The electric field within a conductor is zero.
- The electric field immediately outside a conductor must be perpendicular to the conductor's surface.
 - If there exists an electric field component parallel to the conductor's surface, then the charges on the surface will experience a force.

