ConcepTest 6.1 Kinetic Energy

Car #1 has twice the mass of car #2, but they both have the same kinetic energy. How do their speeds compare?

- 1) $2 v_1 = v_2$
- $2) \quad \sqrt{2} v_1 = v_2$

3)
$$4 v_1 = v_2$$

4)
$$V_1 = V_2$$

5)
$$v_1 = \sqrt{2} v_2$$

ConcepTest 6.1 Kinetic Energy

Car #1 has twice the mass of car #2, but they both have the same kinetic energy. How do their speeds compare?

1)
$$2 v_1 = v_2$$

2) $\sqrt{2} v_1 = v_2$
3) $4 v_1 = v_2$
4) $v_1 = v_2$
5) $v_1 = \sqrt{2} v_2$

Since the kinetic energy is $1/2 mv^2$, and the mass of car #1 is greater, then car #2 must be moving faster. If the ratio of m_1/m_2 is 2, then the ratio of v^2 values must also be 2. This means that the ratio of v_2/v_1 must be the square root of 2.

ConcepTest 6.2 Free Fall

Two stones, one twice the mass of the other, are dropped from a cliff. Just before hitting the ground, what is the kinetic energy of the heavy stone compared to the light one?

- 1) quarter as much
- 2) half as much
- 3) the same
- 4) twice as much
- 5) four times as much

ConcepTest 6.2 Free Fall

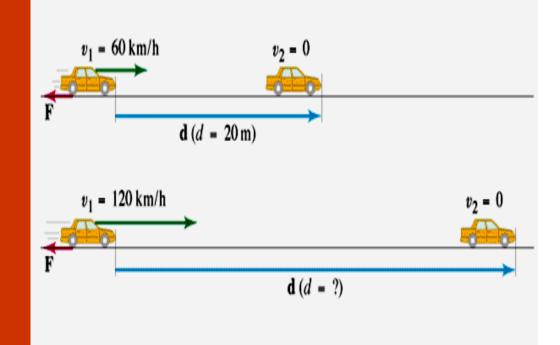
Two stones, one twice the mass of the other, are dropped from a cliff. Just before hitting the ground, what is the kinetic energy of the heavy stone compared to the light one?

- 1) quarter as much
- 2) half as much
- 3) the same
- 4) twice as much
 - 5) four times as much

Consider the work done by gravity to make the stone fall distance *d*:

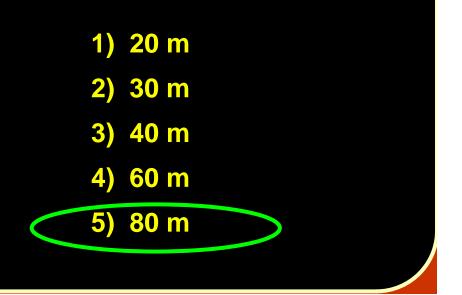
$$\Delta KE = W_{net} = F d \cos \theta$$

 $\Delta KE = mg d$


Thus, the stone with the greater mass has the greater KE, which is twice as big for the heavy stone.

Follow-up: How do the initial values of gravitational PE compare?

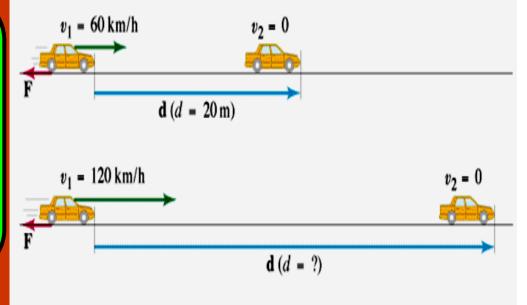
ConcepTest 6.3 Slowing Down


If a car traveling 60 km/hr can brake to a stop within 20 m, what is its stopping distance if it is traveling 120 km/hr? Assume that the braking force is the same in both cases.

- 1) 20 m
- 2) 30 m
- 3) 40 m
- 4) 60 m
- 5) 80 m

ConcepTest 6.3 Slowing Down

If a car traveling 60 km/hr can brake to a stop within 20 m, what is its stopping distance if it is traveling 120 km/hr? Assume that the braking force is the same in both cases.

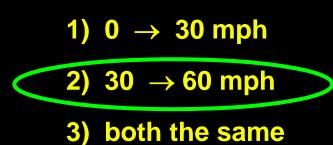


$$Fd = W_{net} = \Delta KE = 0 - 1/2 mv^2$$

thus: $|F| d = 1/2 mv^2$

Therefore, if the speed doubles,

the stopping distance gets four times larger.

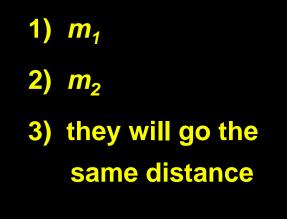

ConcepTest 6.4 Speeding Up

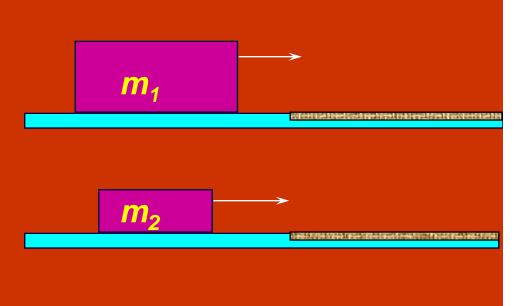
A car starts from rest and accelerates to 30 mph. Later, it gets on a highway and accelerates to 60 mph. Which takes more energy, the $0 \rightarrow 30$ mph, or the $30 \rightarrow 60$ mph?

- 1) 0 \rightarrow 30 mph
- 2) $30 \rightarrow 60$ mph
- 3) both the same

ConcepTest 6.4 Speeding Up

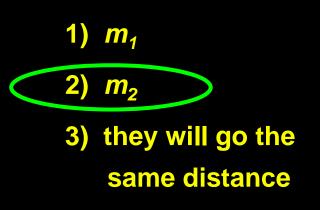
A car starts from rest and accelerates to 30 mph. Later, it gets on a highway and accelerates to 60 mph. Which takes more energy, the $0 \rightarrow 30$ mph, or the $30 \rightarrow 60$ mph?

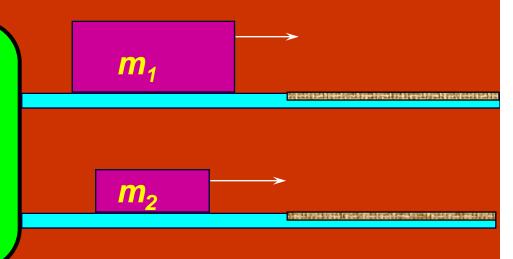



The change in KE $(1/2 mv^2)$ involves the velocity squared. So in the first case, we have: $1/2 m (30^2 - 0^2) = 1/2 m (900)$ In the second case, we have: $1/2 m (60^2 - 30^2) = 1/2 m (2700)$ Thus, the bigger energy change occurs in the second case.

Follow-up: How much energy is required to stop the 60-mph car?

ConcepTest 6.5 Work and Energy I


Two blocks of mass m_1 and m_2 ($m_1 > m_2$) slide on a frictionless floor and have the same kinetic energy when they hit a long rough stretch ($\mu > 0$), which slows them down to a stop. Which one goes farther?



ConcepTest 6.5 Work and Energy I

Two blocks of mass m_1 and m_2 ($m_1 > m_2$) slide on a frictionless floor and have the same kinetic energy when they hit a long rough stretch ($\mu > 0$), which slows them down to a stop. Which one goes farther?

With the same ΔKE , both blocks must have the same work done to them by friction. The friction force is less for m_2 so stopping distance must be greater.

Follow-up: Which block has the greater magnitude of acceleration?