Chapter 2 Thermal Expansion

THE COEFFICIENT OF LINEAR thermal expansion (CTE, α , or α_1) is a material property that is indicative of the extent to which a material expands upon heating. Different substances expand by different amounts. Over small temperature ranges, the thermal expansion of uniform linear objects is proportional to temperature change. Thermal expansion finds useful application in bimetallic strips for the construction of thermometers but can generate detrimental internal stress when a structural part is heated and kept at constant length.

For a more detailed discussion of thermal expansion including theory and the effect of crystal symmetry, the reader is referred to the CINDAS Data Series on Material Properties, Volumes 1 to 4, *Thermal Expansion of Solids* (Ref 1).

Definitions

Most solid materials expand upon heating and contract when cooled. The change in length with temperature for a solid material can be expressed as:

$$(l_{\rm f} - l_0)/l_0 = \alpha_1 (T_{\rm f} - T_0) \quad \Delta l/l_0 = \alpha_1 \Delta T$$
$$\alpha_1 = 1/l(dl/dT)$$

where l_0 and l_f represent, respectively, the original and final lengths with the temperature change from T_0 to T_f . The parameter α_1 CTE and has units of reciprocal temperature (K⁻¹) such as μ m/m · K or 10⁻⁶/K. Conversion factors are:

To convert	То	Multiply by
10 ⁻⁶ /K	10 ⁻⁶ /°F	0.55556
10 ⁻⁶ /°F	10 ⁻⁶ /K	1.8
ppm/°C	10-6/K	1
10 ⁻⁶ /°C	10 ⁻⁶ /K	1
(µm/m)/°F	10 ⁻⁶ /K	1.8
(µm/m)/°C	10-6/K	1
10 ⁻⁶ /R	106/K	1.8

The coefficient of thermal expansion is also often defined as the fractional increase in length per unit rise in temperature. The exact definition varies, depending on whether it is specified at a precise temperature (true coefficient of thermal expansion or $\overline{\alpha}$ or over a temperature range (mean coefficient of thermal expansion or α). The true coefficient is related to the slope of the tangent of the length versus temperature plot, while the mean coefficient is governed by the slope of the chord between two points on the curve. Variation in CTE values can occur according to the definition used. When α is constant over the temperature range then $\alpha = \overline{\alpha}$. Finite-element analysis (FEA) software such as NASTRAN (MSC Software) requires that α be input, not $\overline{\alpha}$.

Heating or cooling affects all the dimensions of a body of material, with a resultant change in volume. Volume changes may be determined from:

$$\Delta V/V_0 = \alpha_V \Delta T$$

where ΔV and V_0 are the volume change and original volume, respectively, and α_V represents the volume coefficient of thermal expansion. In many materials, the value of α_V is anisotropic; that is, it depends on the crystallographic direction along which it is measured. For materials in which the thermal expansion is isotropic, α_V is approximately $3\alpha_1$.

Measurement

To determine the thermal expansion coefficient, two physical quantities (displacement and temperature) must be measured on a sample that is undergoing a thermal cycle. Three of the main techniques used for CTE measurement are dilatometry, interferometry, and thermomechanical analysis. Optical imaging can also be used at extreme temperatures. X-ray diffraction can be used to study changes in the lattice parameter but may not correspond to bulk thermal expansion.

Dilatometry. Mechanical dilatometry techniques are widely used. With this technique, a specimen is heated in a furnace and displacement of the ends of the specimen are transmitted to a sensor by means of push rods. The precision of the test is lower than that of interferometry, and the test is generally applicable to materials with CTE above 5×10^{-6} /K (2.8×10^{-6} /°F) over the temperature range of -180 to 900 °C (-290to 1650 °F). Push rods may be of the vitreous silica type, the high-purity alumina type, or the isotropic graphite type. Alumina systems can extend the temperature range up to 1600 °C (2900 °F) and graphite systems up to 2500 °C (4500 °F). ASTM Test Method E 228 (Ref 2) cove the determination of linear thermal expansion of rigid solid materials using vitreous silica push rod or tube dilatometers.

Interferometry. With optical interference techniques, displacement of the specimen ends is measured in terms of the number of wavelengths of monochromatic light. Precision is significantly greater than with dilatometry, but because the technique relies on the optical reflectance of the specimen surface, interferometry is not used much above 700 °C (1290 °F). ASTM Test Method E 289 (Ref 3) provides a standard method for linear thermal expansion of rigid solids with interferometry that is applicable from -150 to 700 °C (-240 to 1290 °F) and is more applicable to materials having low or negative CTE in the range of $<5 \times 10^{-6}/K$ (2.8 × 10⁻⁶/°F) or where only limited lengths of thickness of other higher expansion coefficient materials are available.

Thermomechanical analysis measurements are made with a thermomechanical analyzer consisting of a specimen holder and a probe that transmits changes in length to a transducer that translates movements of the probe into an electrical signal. The apparatus also consists of a furnace for uniform heating, a temperature-sensing element, calipers, and a means of recording results. ASTM Test Method E 831 (Ref 4) describes the standard test method for linear thermal expansion of solid materials by thermomechanical analysis. The lower limit for CTE with this method is 5×10^{-6} /K (2.8×10^{-6} /°F), but it may be used at lower or negative expansion levels with decreased accuracy and precision. The applicable temperature range is -120 to 600 °C (-185 to 1110 °F), but the temperature range may be extended depending on instrumentation and calibration materials.

Application Considerations

With respect to temperature, the magnitude of the CTE increases with rising temperature. Thermal expansion of pure metals has been well characterized up to their melting points, but data for engineering alloys at very high temperatures may be limited. In general, CTE values for metals fall between those of ceramics (lower values) and polymers (higher values). Common values for metals and alloys are in the range of 10 to 30×10^{-6} /K (5.5 to 16.5×10^{-6} /°F). The lowest expansion is found in the iron-nickel alloys such as Invar. Increasing expansion occurs with silicon, tungsten, titanium, silver, iron, nickel, steel, gold, copper, tin, magnesium, aluminum, zinc, lead, potassium, sodium, and lithium.

Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickelchromium, nickel-cobalt, or cobalt-chromium alloying. Low-expansion alloys are used in applications such as rods and tapes for geodetic surveying, compensating pendulums and balance wheels for clocks and watches, moving parts that require control of expansion (such as pistons for some internal-combustion engines), bimetal strip, glass-to-metal seals, thermostatic strip, vessels and piping for storage and transportation of liquefied natural gas, superconducting systems in power transmissions, integratedcircuit lead frames, components for radios and other electronic devices, and structural components in optical and laser measuring systems.

Aluminum and Aluminum Alloys. The dimensional change of aluminum and its alloys with a change of temperature is roughly twice that of the ferrous metals. The average CTE for commercially pure metal is 24×10^{-6} /K (13 ×

10⁻⁶/°F). Aluminum alloys are affected by the presence of silicon and copper, which reduce expansion, and magnesium, which increases it. Its high expansion should be considered when aluminum is used with other materials, especially in rigid structures, although the stresses developed are moderated by the low elastic modulus of aluminum. If dimensions are very large, as for example in a light alloy superstructure on a steel ship or where large pieces of aluminum are set on a steel framework or in masonry, then slip joints, plastic caulking, and other stress-relieving devices are usually needed. In the aluminum internal-combustion engine piston that works in an iron or steel cylinder, differential expansion is countered by the employment of low-expansion iron cylinder linings, or by split piston skirts and nonexpanding struts cast into the piston.

Steels. Plain chromium stainless steel grades have an expansion coefficient similar to carbon (mild) steels, but that of the austenitic grades is about 1½ times higher. The combination of high expansion and low thermal conductivity means that precautions must be taken to avoid adverse effects. For example, during welding of austenitic grades use low heat input, dissipate heat by use of copper backing bars, and use adequate jigging. Coefficient of thermal expansion must be considered in components that use a mixture of materials such as heat exchangers with mild steel shells and austenitic grade tubes.

Welding. The coefficient of thermal expansion is an important factor when welding two dissimilar base metals. Large differences in the CTE values of adjacent metals during cooling will induce tensile stress in one metal and compressive stress in the other. The metal subject to tensile stress may hot crack during welding, or it may cold crack in service unless the stresses are relieved thermally or mechanically. This factor is particularly important in joints that will operate at elevated temperatures in a cyclic temperature mode. A common example of this is austenitic stainless steel/ferritic steel pipe butt joints used in energy-conversion plants.

Data Tables

Table 2.1 lists ferrous and nonferrous metal and alloy groups in increasing order of CTE along with the range of CTE values from approximately room temperature to 100 °C (212 °F). Table 2.2 list CTE values for specific metals and alloys along with temperature, density, reference, and qualifying information where available. Table 2.2 is ordered according to material hierarchy. Refer to Appendix A.1 for a complete hierarchy.

REFERENCES

- R.E. Taylor, CINDAS Data Series on Materials Properties, *Thermal Expansion of Solids*, Vol 1–4, ASM International, 1998
- 2. "Standard Test Method for Linear Thermal Expansion of Solid Materials with a Vitreous Silica Dilatometer," E 228-95, *Annual Book* of ASTM Standards, ASTM, 1995
- "Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry," E 289-99, Annual Book of ASTM Standards, ASTM, 1999
- 4. "Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis," E 831, *Annual Book of ASTM Standards*, ASTM, 2000

SELECTED REFERENCES

- J.E. Eltherington & Son (Aluminium) Ltd, http://www.eltherington.co.uk/, 2002
- Interdisciplinary Research Centre in Computer Aided Materials Engineering, Materials Engineering Department, University of Wales, Swansea, U.K., http://irc.swansea.ac.uk/, 1998; revised 2001
- *Metals Handbook Desk Edition*, 2nd ed., ASM International, 1998
- R. Nave, Hyperphysics, Georgia State University, http://hyperphysics.phy-astr.gsu.edu, 2002
- Welding, Brazing, and Soldering, Vol 6, ASM Handbook, ASM International, 1993

 Table 2.1 Summary of Thermal Expansion

 Coefficient of Linear Thermal Expansion (CTE), Approximate Ranges at Room Temperature to 100 °C (212 °F), from Lowest to Highest CTE Value

C	TE	CTE			
10 ⁻⁶ /K	10 ⁻⁶ /°F	Material	10 ⁻⁶ /K	10 ⁻⁶ /°F	Material
2.6-3.3	1.4-1.8	Pure Silicon (Si)	12	6.5	Structural steel
2.2-6.1	1.2-3.4	Pure Osmium (Os)	11-13	5.9-7.1	Air-hardening medium-alloy cold work tool
4.5-4.6	2.5-2.6	PureTungsten (W)			steel
0.6-8.7	0.3-4.8	Iron-cobalt-nickel alloys	11-13	6.2-7.0	High-manganese carbon steel
4.8-5.1	2.7 - 2.8	Pure Molybdenum (Mo)	10-14	5.6-7.6	Malleable cast iron
5.6	3.1	Pure Arsenic (As)	12	6.6	Mold tool steel
6.0	3.3	Pure Germanium (Ge)	8.8-15	4.9-8.4	Nonresulturized carbon steel
0.1 5 7 7 0	3.4	Pure Hamium (HI)	11-14	5.9 - 1.5	Chromium molybdenum alloy steel
5.7-7.0	3.2-3.9	Pure Carium (Ca)	9.4-13	5.2-8.2	Molyhdenum/molyhdenum sulfide alloy
6.2–6.7	3 4-3 7	Pure Rhenium (Re)	12-13	0.5-7.0	steel
65	36	Pure Tantalum (Ta)	12	6.8	Chromium vanadium allov steel
4.9-8.2	2.7-4.6	Pure Chromium (Cr)	11-14	5.9-7.6	Cold work tool steel
6.8	3.8	Pure Iridium (Ir)	11-14	6.0-7.5	Ductile medium-silicon cast iron
2.0-12	1.1-6.7	Magnetically soft iron alloys	7.6-17	4.2-9.4	Nickel with chromium and/or iron,
7.1	3.9	Pure Technetium (Tc)			molybdenum
7.2–7.3	4.0-4.1	Pure Niobium (Nb)	11-14	6.2-7.5	Resulfurized carbon steel
5.1–9.6	2.8-5.3	Pure Ruthenium (Ru)	12–13	6.4–7.4	High strength low-alloy steel (HSLA)
4.5-11	2.5-6.2	Pure Praseodymium (Pr)	4.8-20	2.7–11	Pure Lutetium (Lu)
7.1-9.7	3.9-5.4	Beta and near beta titanium	10-15	5.6-8.3	Duplex stainless steel
8.3-8.5	4.6-4.7	Pure Knodium (Kn)	9.9-13	5.5 - 7.3	High strength structural steel
0.3-0.4 5 5 11	4.0-4.7	Zirconium allovs	9.0-10	5.0-8.9	Pure Iron (Fe)
8 4 <u>8</u> 6	3.1-0.3 4 7_4 8	Pure Titanium (Ti)	12-13	59_80	Metal matrix composite aluminum
86-87	4 8-4 8	Mischmetal	10-15	5 6-8 6	Cobalt alloys (including Stellite)
7.6–9.9	4.2-5.5	Unalloved or low-allov titanium	6.0-20	3.3-11	Pure Yttrium (Y)
7.7-10	4.3-5.7	Alpha beta titanium	11-15	6.0-8.5	Gray cast iron
4.0-14	2.2-7.8	Molybdenum alloys	9.0-17	5.0-9.6	Precipitation hardening stainless steel
8.8-9.1	4.9-5.1	Pure Platinum (Pt)	13	7.4	Pure Bismuth (Bi)
7.6–11	4.2-5.9	Alpha and near alpha titanium	7.0–20	3.9–11	Pure Holmium (Ho)
9.3–9.6	5.2-5.3	High-chromiun gray cast iron	11–16	6.1-8.6	Nickel copper
9.3–9.9	5.2-5.5	Ductile high-chromium cast iron	13	7.4	Pure Nickel (Ni)
9.1–10	5.1-5.6	Pure Gadolinium (Gd)	14	7.5	Palladium alloys
8.4-11	4.7-6.3	Pure Antimony (Sb)	12-14	6.8-/./	Pure Cobalt (Co)
8.0-11	4.8-0.3	Protactinium (Pa)	10-17	5.0-9.0 7.0 8.2	Cast austentitic stanness steel
9.9 9.8–10	54-58	Water-hardening tool steel	8 1-19	7.0-0.2 4 5-11	High-nickel grav cast iron
10-11	56-59	Molybdenum high-speed tool steel	14	7.8	Bismuth tin allovs
6.8–14	3.8-7.8	Niobium alloys	7.0–20	3.9–11	Pure Uranium (U)
9.3-12	5.2-6.5	Ferritic stainless steel	14	7.8	Pure Gold (Au)
7.6-14	4.2-7.5	Pure Neodymium (Nd)	10-19	5.3-11	Pure Samarium (Sm)
11	5.9	Cast ferritic stainless steel	7.9-21	4.4-12	Pure Erbium (Er)
8.9-12	4.9–6.9	Hot work tool steel	13–16	7.0–9.0	Nickel chromium silicon gray cast iron
9.5–12	5.3-6.6	Martensitic stainless steel	14	7.8	Tungsten alloys
9.9–12	5.5-6.5	Cast martensitic stainless steel	14-15	7.7-8.4	Beryllium alloys
10 12	6.1	Cermet	12-18	6./-10	Manganese alloy steel
10-12	5.0-0.0	Iron carbon allows	10-20	5.0-11	Iron alloys Proprietory alloy steel
93-12	5.2-6.9	Pure Terbium (Tb)	9.7-19	85	White cast iron
9 8-13	54-69	Cobalt chromium nickel tungsten	12-19	67-10	Austenitic cast iron with graphite
10-12	5.8-6.7	High-carbon high-chromium cold work tool	8.8-22	4.9–12	Pure Thulium (Tm)
		steel	14-18	7.5-9.8	Wrought copper nickel
11	6.2	Tungsten high-speed tool steel	13-19	7.0–10	Ductile high-nickel cast iron
8.5-14	4.7-7.8	Commercially pure or low-alloy nickel	4.5-27	2.5-15	Pure Lanthanum (La)
11	6.3	Low-alloy special purpose tool steel	16-18	8.8-10	Wrought high copper alloys
7.1–16	3.9-8.7	Pure Dysprosium (Dy)	17	9.4	Cast high copper alloys
9.3-13	5.2-7.2	Nickel molybdenum alloy steel	15-19	8.3–11	Wrought bronze
11-12	6.1-6.6	Pure Palladium (Pd)	1/-18	9.2-9.8	Cast copper
11	0.3 6.4	Fuie Inonum (III) Wrought iron	10-18	9.1-1U 0.6	wrought copper Cast copper nickel silver
10-13	57_70	Oil-hardening cold work tool steel	9 8_25	5 4_14	Austenitic stainless steel
7.6–15	4.2-8.5	Pure Scandium (Sc)	16–19	8.9–11	Cast bronze
11-12	6.1-6.8	Pure Beryllium (Be)	16-19	8.9-11	Wrought copper nickel silver
6.3-17	3.5-9.4	Carbide	18	10	Pure Barium (Ba)
10-13	5.7-7.3	Nickel chromium molybdenum alloy steel	18	10	Cast copper nickel
11-12	6.1–6.9	Shock-resisting tool steel	18	10	Pure Tellurium (Te)
			18-20	9.9–11	Silver alloys

12 / Thermal Properties of Metals

 Table 2.1 Summary of Thermal Expansion

 Coefficient of Linear Thermal Expansion (CTE), Approximate Ranges at Room Temperature to 100 °C (212 °F), from Lowest to Highest CTE Value

C	TE		CTE		
10 ⁻⁶ /K	10 ^{-6/°} F	Material	10 ⁻⁶ /K	10 ^{-6/°} F	Material
19	11	Pure Silver (Ag)	25-26	14-15	Wrought magnesium aluminum zinc
17-21	9.4-12	Wrought brass	25-26	14-15	Cast magnesium aluminum manganese
16-23	8.9-13	3xx.x series cast aluminum silicon+copper or	26	15	Cast magnesium rare earth
		magnesium	17-36	9.2-20	Commercially pure tin
16-24	8.9-13	2xxx series wrought aluminum copper	25-27	14-15	Commercially pure magnesium
16-24	8.9-13	Zinc copper titanium alloys	26	15	Pure Ytterbium (Yb)
16-24	9.1-13	6xxx series wrought aluminum magnesium	20-33	11-18	Pure Indium (In)
		silicon	25-28	14-16	Lead tin solder
20	11	Pure Strontium (Sr)	27-29	15-16	Commercially pure or low-alloyed lead
20-21	11-12	Cast brass	28	16	Tin silver
18-24	10-13	1xx.x series commercially pure cast aluminum	23-34	13-19	9xx.x series cast aluminum plus other
20-22	11-12	4xx.x series cast aluminum silicon			elements
19–23	11-13	2xx.x series cast aluminum copper	29	16	Pure Lead (Pb)
12-32	6.4–18	Pure Gallium (Ga)	28-30	16-17	Pure Thallium (Tl)
22	12	Manganese (Mn)	26-32	14-18	Magnesium alloys
12-22	6.9–12	4xxx series wrought aluminum silicon	20-40	11-22	Unalloyed or low-alloy zinc
22	12	Pure Calcium (Ca)	22-40	12-22	5xxx series wrought aluminum magnesium
21-24	12-13	7xxx series wrought aluminum zinc	30-32	17-18	Pure Cadmium (Cd)
22-24	12-13	3xxx series wrought aluminum manganese	33-35	18-19	Zinc copper
23	13	8xx.x series cast aluminum tin	35	19	Pure Europium (Eu)
23	13	Unalloyed aluminum ingot	37–49	21-27	Pure Selenium (Se)
22-25	12-14	1xxx series commercially pure wrought	56	31	Pure Lithium (Li)
		aluminum	64	36	Pure Sulfur (S)
23-25	13-14	5xx.x series cast aluminum magnesium	69-71	38–39	Pure Sodium (Na)
24–25	13-14	7xx.x series cast aluminum zinc	83	46	Pure Potassium (K)
21-29	12-16	Tin lead	90	50	Pure Rubidium (Rb)
22-28	12-15	Zinc aluminum	14-203	7.8-113	Pure Plutonium (Pu)
23-27	13-15	Zinc copper aluminum	125	70	Pure Phosphorus (P)
25-26	14-15	Cast magnesium aluminum zinc	97-291	54-162	Pure Cesium (Cs)
25-26	14-15	Pure Magnesium (Mg)			

Table 2.2 Coefficient of Linear Thermal Expansion (CTE) of Metals and Alloys

Temper	rature	Der	nsity		CIE		
°C	٥F	kg/m ³	lb/in. ³	10 ⁻⁶ /K	10 ⁻⁶ / ⁰ F	Notes	Reference
Carbide ba	ased materia	al					
71WC-12.5T	iC-12TaC-4.5Co	o, Cobalt-bonded	cemented carbide				
RT	RT	12000 u	0.434 d			Medium grain	16
200	390			5.2 u	2.9 d	Medium grain	16
1000	1830			6.5 u	3.6 d	Medium grain	16
72WC-8TiC-	11.5TaC-8.5Co,	, Cobalt-bonded c	emented carbide			c	
RT	RT	12600 u	0.455 d			Medium grain	16
200	390			5.8 u	3.2 d	Medium grain	16
1000	1830			6.8 u	3.8 d	Medium grain	16
75WC-25Co	, Cobalt-bonde	d cemented carbio	de			C	
RT	RT	13000 u	0.470 d			Medium grain	16
200	390			6.3 u	3.5 d	Medium grain	16
84WC-16Co	. Cobalt-bonde	d cemented carbio	de				
RT	RT	13900 u	0.502 d			Fine, coarse grain	16
200	390			5.8 u	3.2 d	Coarse grain	16
1000	1830			7.0 u	3.9 d	Coarse grain	16
90WC-10Co	, Cobalt-bonde	d cemented carbio	de				
RT	RT	14500 u	0.524 d			Coarse grain	16
RT	RT	14600 u	0.527 d			Fine grain	16
200	390	1.500 u	0.0 <i>2</i> / u	5.2 u	2.9 d	Coarse grain	16
94WC-6Co	Cobalt-bonded	cemented carbide	9	<i>v.</i> = 4		Source Brunn	
RT	RT	15000 11	0 54 d			Fine medium coarse grain	16
200	390	10000 u	0.014	43 u	2 4 d	Fine, medium, coarse grain	16
1000	1830			5.6 u	3.1.d	Coarse grain	16
1000	1830			5.0 u	3.3 d	Fine grain	16
1000	1830			54 u	3.0 d	Medium grain	16
97WC-3Co.	Cobalt-bonded	cemented carbide	e	5.1 u	5.0 u	inourum Brunn	10
RT	RT	15300 11	0 553 d			Medium grain	16
200	390	15500 u	0.555 u	4.0 11	2.2 d	Medium grain	16
Cr3C2	570			4.0 u	2.2 u		10
RT	RТ	6660 th	0 241 d	10.3	57d		16
HfC	IX I	0000 ш	0.271 U	10.3 u	5.7 u		10
DT	рт	12760 +h	0.461 d	66.0	37d		16
Mo2C	K1	12/00 til	0.401 U	0.0 u	5.7 u		10
DT	рт	0180 45	0 222 4	78	4 2 d		16
NhC	K1	9100 ln	0.332 U	7.0 U	4.3 u		10
DT	рт	7900 41-	0.28 4	67.0	274		16
	KI	/800 th	0.28 d	0./ U	3./ a		10
Idu DT	DT	14500 (1	0.524 3	(2	254		16
	KI	14300 th	0.324 d	0.3 U	3.3 U		10
н с рт	DТ	40.40.41	0.179.1	7 7	4.2.1		17
	КI	4940 th	0.178 d	/./ u	4.3 d		16
VC	DT	6710 4	0.20(1	7.0	4.0.1		16
KI 7-0	KI	5/10 th	0.206 d	7.2 u	4.0 d		16
Zru	DC	(F(A))	0.005.1	<i>(</i> 7	2.7.1		
RT	КТ	6560 th	0.237 d	6.7 u	3.7 d		16
Cermet							
Cr-Al2O3, 77	7%Cr 23%Al2O	3, Aluminum oxide	e cermet				
RT	RT	5900 u	0.21 u				16
25-800	77-1470			8.64 mean	4.80 mean		16
25-1000	75-1830			8.93 mean	4.96 mean		16
25-1315	77-2400			10.35 mean	5.75 mean		16
CrB-Cr-Mo.	Boride-base ce	ermet					-
RT	RT	6770-7270 u	0.245-0.263 u				16
20-980	68-1800	2u		9.90 mean	5.50 mean		16
20 900	00 1000			J.Jo moun	5.50 mean		10

14 / Thermal Properties of Metals

Table 2.2 Coefficient of Linear Thermal Expansion (CTE) of Metals and Alloys

Tempera	ature	Der	sity	-	CTE		
°C	٥F	kg/m ³	lb/in. ³	10 ⁻⁶ /K	10 ⁻⁶ / ^o F	Notes	Reference
Cermet							
CrB-Ni, Borid	e-base cerme	t					
RT	RT	6160-6270 u	0.223-0.225 u				16
20-980	68-1800			9.81 mean	5.45 mean		16
TiB2, Boride-	base cermet						
RT	RT	4500 u	0.163 u				16
20-760	68-1400			6.39 mean	3.55 mean		16
Type A, Chro	mium carbide	cermet					
RT	RT	7000 u	0.253 u	10.71 mean	5.95 mean		16
Type B, Chro	mium carbide	cermet					
RT	RT	6900 u	0.250 u	11.10 mean	6.17 mean		16
ZrB2, Boride-	base cermet						
RT	RT	6100 u	0.221 u				16
20-760	68-1400			7.5 mean	4.17 mean		16
ZrB2-B, Borid	le-base cerme	t					
RT	RT	4970-5270 u	0.180-0.191 u				16
20-1205	68-2200			5.76 u	3.20 u		16
Cast Iron, A BS 3468-F1, F	Austenitic w Flake graphite	ith Graphite					
RT	RT	7300 u	0.264 d	18.7 u	10.4 d		72
BS 3468-F2, F	- lake graphite						
RT	RT	7300 u	0.264 d	18.7 u	10.4 d		72
BS 3468-F3, F	- lake graphite						
RT	RT	7300 u	0.264 d	12.4 u	6.9 d		72
BS 3468-S2, S	Spheroidal gra	phite					
RT	RT	7400 u	0.267 d	18.7 u	10.4 d		72
BS 3468-S2B	, Spheroidal g	raphite					
RT	RT	7400 u	0.267 d	18.7 u	10.4 d		72
BS 3468-S2C	, Spheroidal g	raphite					
RT	RT	7400 u	0.267 d	18.4 u	10.2 d		72
BS 3468-S2M	, Spheroidal g	raphite					
RT	RT	7400 u	0.267 d	14.7 u	8.2 d		72
BS 3468-S2W	/, Spheroidal g	raphite					
RT	RT	7400 u	0.267 d	18.7 u	10.4 d		72
BS 3468-S3, S	Spheroidal gra	phite					
RT	RT	7400 u	0.267 d	12.6 u	7.0 d		72
BS 3468-S5S,	, Spheroidal g	raphite					
RT	RI	7600 u	0.275 d	12.1 u	6./d		12
BS 3468-56, 3	Spheroidal gra		0.0(1.1	10.0	10.1.1		70
KI	KI	/300 u	0.264 d	18.2 u	10.1 d		12
Cast Iron, D	Ouctile						
100-70-03							
RT	RT	7110 d	0.257 u				67
20-200	68-390			10.8 d	6.0 u		67
120-90-02							
RT	RT	7110 d	0.257 u				67
20-200	68-390			11.7 d	6.5 u		67
20-26% Ni							
20-200	68-390			4.0-18.9 d	2.2-10.5 u	Austenitic	67
60-40-18							
RT	RT	7110 d	0.257 u				67
20-200	68-390			11.9 d	6.6 u		67

Table 2.2 Coefficient of Linear Thermal Expansion (CTE) of Metals and Alloys

Temper	ature	D	Density		CTE		
°C	٥F	kg/m ³	lb/in. ³	10 ⁻⁶ /K	10 ⁻⁶ / ^o F	Notes	Reference
Cast Iron, I	Ductile						
60-45-10							
20-100	68-212			11.5 d	6.4 u	Ferritic	67
20-200	68-390			11.7-11.9 d	6.5-6.6 u	Ferritic	67
20-600	68-1112			13.5 d	7.5 u	Ferritic	67
80-55-06							
RT	RT	7110 d	0.257 u				67
20-200	68-390			11.0 d	6.1 u		67
80-60-03							
20-100	68-212			11.5 d	6.4 u	Pearlitic	67
20-200	68-390			11.9-12.6 d	6.6-7.0 u	Pearlitic	67
20-300	68-570			12.6 d	7.0 u	Pearlitic	67
20-400	68-750			13.1 d	7.3 u	Pearlitic	67
20-500	68-930			13.3 d	7.4 u	Pearlitic	67
20-600	68-1112			13.5 d	7.5 u	Pearlitic	67
20-700	68-1292			13.9 d	7.7 u	Pearlitic	67
Ferritic ducti	ile iron						
20-100	68-212			11.2 u	6.23 u		15
20-200	68-390			12.2 u	6.78 u		15
20-300	68-570			12.8 u	7.12 u		15
20-400	68-750			13.2 u	7.34 u		15
20-500	68-930			13.5 u	7.51 u		15
20-600	68-1110			13.7 u	7.62 u		15
20-700	68-1290			13.8 u	7.67 u		15
20-760	68-1400			14.8 u	8.23 u		15
20-870	68-1600			15.3 u	8.51 u		15
High-chromi	um cast iron (f	erritic), Heat res	istant				
RT	RT	7300-7500 u	u 0.264-0.271 u				15, 58
21	70			9.3-9.9 u	5.2-5.5 u		15, 58
High-nickel o	ductile (20% Ni) cast iron, Heat	resistant				
RT	RT	7400 u	0.268 u				15, 58
21	70			18.7 u	10.4 u		15, 58
High-nickel o	ductile (23% Ni) cast iron, Heat	resistant				
RT	RT	7400 u	0.268 u				15, 58
21	70			18.4 u	10.2 u		15, 58
High-nickel o	ductile (30% Ni) cast iron, Heat	resistant				
RT	RT	7500 u	0.270 u				15
20-205	68-400			12.6-14.4 u	7.0-8.0 d		15
High-nickel o	ductile (36% Ni) cast iron, Heat	resistant				
RT	RT	7700 u	0.278 u				15
20-205	68-400			7.2 u	4.0 d		15
High-nickel o	ductile cast iro	n, Corrosion-res	sistant				
RT	RT	7400 u	0.267 u				15, 58
21	70			12.6-18.7 u	7.0-10.4 d		15, 58
Medium silic	on ductile iron	1					
RT	RT	7100 u	0.257 u				58, 72
21	70			10.8-13.5 u	6.0-7.5 u		58, 72
Medium-silic	on ductile cas	t iron, Heat resis	stant				
RT	RT	7100 u	0.257 u				15
21	70			10.8-13.5 u	6.0-7.5 d		15
Ni-resist type	e D-2						
RT	RT	7418 u	0.268 u				57, 67
RT	RT			17.6 d	9.8 u		67
21-204	70-400			14.4 d	8.0 u		67

16 / Thermal Properties of Metals

Table 2.2 Coefficient of Linear Thermal Expansion (CTE) of Metals and Alloys

Temper	rature	D	ensity		CTE		
°C	٩F	kg/m ³	lb/in. ³	10 ⁻⁶ /K	10 ⁻⁶ / <i>°</i> F	Notes	Reference
Cast Iron	Ductile						
Ni-resist typ	e D-2B						
RT	RT	7474 u	0 270 u				67
20-200	68-390	, . , u	0.270 a	18.7 d	10.4 u		67
Ni-resist tvp	e D-2C						• •
RT	RT	7418 u	0 268 11				67
20-200	68-390	,o u	0.200 u	184 d	10 2 u		67
Ni-resist tvp	e D-3			10.1 4	10. 2 u		0,
RT	RT	7474 u	0.270 u	9.9 d	5.5 u		67
21-204	70-400			12.6 d	7.0 u		67
Ni-resist typ	e D-4						
RT	RT	7474 u	0.270 u	13.1 d	7.3 u		67
21-204	70-400		,	18.7 d	10 4 u		67
Ni-resist tvp	e D-5			10.7 4	10.14		0,
RT	RT	7695 11	0 278 11	50 d	2811		67
Pearlitic duo	tile iron	,0,0 u	0. <u> </u> , o u	0.0 u	2.0 4		0,
20-100	68-212			10.6 u	5 89 11		15
20-200	68-390			11.7 u	6.51 u		15
20-300	68-570			12.4 u	6 89 u		15
20-400	68-750			13.0 u	7 23 u		15
20-500	68-930			13.3 u	7 39 u		15
20-600	68-1110			13.6 u	7.56 u		15
20-760	68-1400			14.8 u	8.23 u		15
20-870	68-1600			15.3 u	8.51 u		15
Silicon-molv	bdenum ductil	le iron		10.0 4	0.01 u		10
RT	RT	6850 u	0.247 d	10.0-11.8 u	5.6-6.6 d		72
Continue	O						
Cast Iron,	Gray						
BS 1452 Gra	ide 150						
RT	RT	7050 u	0.255 d				72
20-200	68-390			11.0 u	6.1 d		72
20-400	68-750			12.5 u	6.9 d		72
BS 1452 Gra	de 180						
RT	RT	7100 u	0.257 d	11.0			72
20-200	68-390			11.0 u	6.1 d		72
20-400	68-750			12.5 u	6.9 d		12
BS 1452 Gra	ide 220	71.50	0.050.1				50
RT	RT	7150 u	0.258 d	11.0			72
20-200	68-390			11.0 u	6.1 d		72
20-400	68-750			12.5 u	6.9 d		72
BS 1452 Gra	ide 250		0.000.1				50
RT 200	RT CO 200	7200 u	0.260 d	11.0	(1)		72
20-200	68-390			11.0 u	6.1 d		72
20-400	68-750			12.5 u	6.9 d		12
BS 1452 Gra	ide 300	70 70	0.0(0.1				50
RT	RT	7250 u	0.262 d	11.0	<i>(</i>))		72
20-200	68-390			11.0 u	6.1 d		72
20-400	08-750			12.5 u	0.9 d		12
во 1452 Gra	IGE 350	72.00	0.264.3				70
KT 20.200	KT GO 200	/300 u	0.264 d	11.0	(1 1		72
20-200	68-390			11.0 u	6.1 d		72
20-400	68-750			12.5 u	6.9 d		72
въ 1452 Gra	ae 400	73.^^	0.011				
RT 20.200	RT (0.200	7300 u	0.264 d	15.0	0.2.1		72
20-200	08-390			15.0 u	8.3 a	Acicular iron	12

ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA www.asminternational.org

This publication is copyright © ASM International[®]. All rights reserved.

Publication title	Product code
ASM Ready Reference: Thermal Properties of Metals	06702G

To order products from ASM International:

Online	Visit www.asminternational.org/bookstore
Telephone	1-800-336-5152 (US) or 1-440-338-5151 (Outside US)
Fax	1-440-338-4634
Mail	Customer Service, ASM International 9639 Kinsman Rd, Materials Park, Ohio 44073, USA
Email	Cust-Srv@asminternational.org
In Europe	American Technical Publishers Ltd. 27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom Telephone: 01462 437933 (account holders), 01462 431525 (credit card) www.ameritech.co.uk
In Japan	Neutrino Inc. Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.