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Critique of the von Mises Yield Criterion 
 

Introduction 

      Commercial releases for finite element methods for stress analysis began in the early 1960’s.  At that time 

the main engineering focus was on materials that were ductile metals with equal yield stresses in tension and 

compression.  The tension yielding (failure) of such a material was usually checked against three “Failure 

Criteria”: the maximum principal tension stress (P1 in SolidWorks simulation), the maximum shear stress 

(INT), and the “Distortional Energy Theory” (VON) at a point.  

       The onset of material yielding in an axial tension test as predicted by the Distortional Energy Theory can be 

reduced to equating the test yield stress to an equivalent stress.  That equivalent stress is known as the von 

Mises Stress [von Mises 1914].  It is NOT a component of the stress tensor, or one of the principal stresses, but 

it has the units of stress. That criterion for the onset of yielding due to distortional energy level is defined as 
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Or 

 

𝜎𝑀 =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2 = 𝜎𝑌𝑖𝑒𝑙𝑑 𝑇𝑒𝑠𝑡 

 

and at any point where σM > σYield Test the material is considered to have failed (yielded). 

 

      Due to that early interest in ductile metals and the large number of stress items than can be plotted the von 

Mises “stress” became the default stress plot.  Any other stress measures of importance have to be specifically 

requested based on the user’s knowledge of the material and the problem being simulated.  For example, in 

SolidWorks Simulation the von Mises “stress” plot is the default of twelve important stress measures as noted 

below (right click Results  Define Stress Plot).  
 

 
Figure 1 Default list of stress plots and graphs 
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     The von Mises criterion is NOT a valid yield (failure) criterion for materials with different yield stress values 

in tension and compression.  There are thousands of materials with a compressive yield stress different from 

their tensile yield stress. The compressive and tensile yield stresses for many such materials are available on 

material property data web sites, such as www.matweb.com.  For example, cast iron has a compressive yield 

stress value that is two to four times its tensile yield stress value and thus a von Mises criterion is NOT valid for 

cast iron.  But the von Mises “stress” appears as the default stress result, even for cast iron.  Each engineer must 

have enough knowledge of the material being used in a simulation to properly decide which yield criteria need 

to be considered.  As another example, human bone has a compressive yield stress value that is typically 70% 

higher than its tensile yield stress value.  Yet again, most of the published studies on stresses in bone present the 

inappropriate von Mises values. 

 

    For a state of plane-stress (𝜎2 = 0) the von Mises distortional energy measure ‘yield curve’ plots as an 

ellipse in the principle stress space,.  Points inside the ellipse have not failed, points on the ellipse (yield curve) 

are impending to fail, and any stress points outside the ellipse denote failed (yielded) material points. The von 

Mises criterion agrees well with the test data for ductile metals, but not brittle materials 

 

Stresses Review:       
      Finite element formulations often give the stress state at a point in terms of the Voigt stress vector notation 

as a condensed form of the symmetric stress tensor [𝝈]: 
 

                                    𝝈𝑇 = [𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜏𝑦𝑧] ⇔ [𝝈] = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

].          

 

    The state of stress at a point is completely defined by three normal and three shear stress components in 

reference to the global coordinate system XYZ.  In general, the values of the stress components change if the 

coordinate system is rotated.  At a certain orientation (X’Y’Z’), all shear stresses vanish and the state of stresses 

is completely defined by three normal stress components (P1, P2, P3).  Those three normal stress components 

are referred to as “principal stresses” and the corresponding reference axes (X’Y’Z’) are referred to as principal 

axes. The principal stresses are the eigenvalues of the stress tensor and the principal axes are their 

corresponding eigenvectors. 

      
 

Figure 2 Stress tensor, Principal normal stresses, and Principal shear stresses 

 

The three maximum shear stresses occur on three mutually perpendicular planes that are offset from the three 

planes of principal stress components by 45 degrees each.  The largest of those three shear stresses is the 

maximum shear stress at the point, 𝜏𝑚𝑎𝑥.  It can be shown that in a axial tension test of a planar specimen at  

http://www.matweb.com/
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impending yield 𝜏𝑚𝑎𝑥 = 𝜎𝑌𝑖𝑒𝑙𝑑 𝑇𝑒𝑠𝑡 2⁄ .  So FEM codes allow plots of that value.  However, other codes, including 

SolidWorks prefer to only compare to the yield data so it offers the intensity (INT ≡ 2 𝜏𝑚𝑎𝑥) as the value to 

compare to the yield stress. 

 

      The principal stresses also define other physically important quantities that relate to failure criteria, 

including the hydrostatic pressure (which is a third of the sum of the stress tensor diagonal values): 

 

                                       𝑝 = (𝜎1 + 𝜎2 + 𝜎3)/3 = (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎33)/3 =  3 𝑇𝑅𝐼                                                       

 

The principal stresses, along with the hydrostatic pressure, are utilized to define several common material yield 

(failure) criteria theories, as will be discussed below. 

 

Material with Multiple Yield Stress Values: 

      When a material yield condition is defined by more than one test value then a new notation is needed.  Here, 

the absolute values of the experimentally measured yield stress values in tension, compression, and shear are 

denoted as 𝑘𝑡, 𝑘𝑐 , and 𝑘𝑠, respectively.  In theory, it can take as many as 21 different tests to define the yield 

conditions of the most general material.  However, in practice most common materials can be defined by one, or 

two, or three of the above yield test values.  The ratio of the tension to compression yield stresses, 𝜅 ≡ 𝑘𝑐 𝑘𝑡⁄ , is 

often referred to as the ‘strength difference’, and when that ratio is not unity the material is sometimes called an 

“asymmetric material”.  In theory, the von Mises criterion is only valid when 𝜅 = 1, but experience shows it 

still to be useful for values ‘reasonably’ near unity, say 1.3. 

 

      In the later sections a few alternate ‘effective stress’ criteria will be presented for materials that have 

different compressive and tensile yield stress test values,  𝜅 ≠ 1.  But how can that be done in SolidWorks (or 

other FEA codes) if such a criterion is not given in the SolidWorks stress options given above?  Beginning with 

release 2017 of SolidWorks Simulation a user can define additional stress measures to be plotted by using a 

feature called the “Results Equation Editor”.  In SolidWorks Simulation select Results  Results Equation 

Plot  Definition  Edit Equation.  SolidWorks provides assistance in creating any custom stress plot 

through the editor’s pull-down menus for selecting the desired stress items, and the functions for combining 

them, as well as the usual arithmetic operations.  In the results editor the full length stress names such as “TRI: 

Triaxial Stress (P1+P2+P3)”, or “VON: von Mises Stress” can be selected from pull-down lists shown below. 

 

      When only the compressive and tensile yield stress values are required to define the yield conditions of a 

material then the three most commonly used ‘equivalent stresses’ are defined by the Burzynski criterion, the 

Hoffman criterion, and the Drucker-Prandtl criterion which will be discussed in the following sections. The 

user’s knowledge of the material should serve as the guide for selecting one or all of the criteria to be displayed.    

 

Burzynski criterion: 

      The Burzynski failure criterion [Burzynski 1929 2008, Fras 2010 2013 2014] applies to materials that have 

different yield stresses in tension and in compression. It states that a material yields when the volume change 

energy at a point equals the deviatoric energy in a tension test at the limit of elastic behavior. It can also be 

extended to include the shear failure value, 𝑘𝑠, as a third property. The Burzynski criterion can be calculated by 

combining the hydrostatic pressure and the von Mises stress along with the ratio of compressive and tensile 

yield stresses. 
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Figure 3 Available functions and stress quantities available in the SWS Results Editor 

 

        

      For a state of plane-stress (𝜎2 = 0) the Burzynski deviatoric energy measure also plots as an ellipse in the 

principle stress space. Figure 4 shows a Burzynski ellipse with the circular points representing the most 

common yield stress tests of: pure tension, pure compression, pure shear, bi-axial tension, and bi-axial 

compression. Note that the center of the Burzynski ellipse does not occur at the origin of the principle stress 

space (unless 𝑘𝑡 ≡ 𝑘𝑐). When the compressive and tensile yield stresses differ, 𝑘𝑡 ≠ 𝑘𝑐, the Burzynski ellipse 

better fits yield or failure data points than the von Mises ellipse. Figure 5 shows a family of Burzynski ellipses 

with 𝑘𝑐 𝑘𝑡 ≡  𝜅⁄ > 1 compared to the dashed von Mises ellipse which requires 𝑘𝑡 ≡ 𝑘𝑐. In Fig. 5, the single 

black point on the 𝜎1 axis is the tension failure stress, 𝑘𝑡, the black points on the negative 𝜎3 axis are different 

compression failure stress values, -𝑘𝑐. The diagonal black points are alternate shear failure stress values, ±𝑘𝑠.  

 

                                             
Figure 4 Yield stress on Burzynski ellipse                 Figure 5 von Mises (dashed) and Burzynski ellipses  

 

      The dissertation of  Fras [2013] includes detailed mathematical investigations of the Burzynski criterion. It 

also compared the criterion to published experimental data for about 25 materials with different tensile and 

compressive yield stresses.  Those data were plotted in the principal stress space along with the Burzynski and  
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the von Mises ellipses. In all cases the Burzynski criterion matched the yield data much better than the von 

Mises criterion. 

 

      The Burzynski criterion requires at least the 𝑘𝑐 and 𝑘𝑡 experimental yield stress measures. Equating the 

Burzynski measure in both tension and compression yield tests predicts impending material failure when 

 

                                                  𝜎𝐵
2 = 𝑘𝑡𝑘𝑐 = 𝑘𝑡(𝜅 𝑘𝑡) = 𝜅 𝑘𝑡

2.  

 

That relation can be simplified to compare a Burzynski effective stress at yield to the tension yield test: 

 

                                       𝜎𝐵 = (3(𝜅 − 1)𝑝 +  √9(𝜅 − 1)2𝑝2 + 4𝜅𝜎𝑀
2 ) /2𝜅 = 𝑘𝑡   

 

If the material yield stress is the same in tension and compression (κ = 1) then the Burzynski criterion reduces 

to the von Mises criterion at impending failure: 

 

                                                     σB(@κ = 1) = (0 +  √4σM
2 ) /2 = σM = kt                    

 

When the material yield stress is the same in tension and compression (𝜅 = 1) then the Burzynski criterion 

reduces to the von Mises criterion. The Burzynski criterion can be extended to include the shear stress failure 

value, 𝑘𝑠.  Then the criterion form is  

 

                          𝜎𝐵 

2 = 𝑘𝑐𝑘𝑡𝜎𝑀 2 (3𝑘𝑠
2)⁄ + (9 − 3 𝑘𝑐𝑘𝑡 𝑘𝑠

2⁄ )𝑝2 + 3(𝑘𝑐 − 𝑘𝑡)𝑝 = 𝑘𝑐𝑘𝑡 = 𝜅 𝑘𝑡
2.    

 

      To see how to plot the Burzynski effective stress in SolidWorks simulation read the help file 

Burzynski_SWS_Plot_Instructions.pdf.  Minor edits will create Hoffman and Drucker-Prandl effective stress 

plots. 

 

Hoffman criterion:   

      The Hoffman effective stress criterion [Hoffman 1967] predicts the onset of yielding when 
 

𝜎𝑀
2

𝑘𝑐𝑘𝑡
+ 𝑝 (

1

𝑘𝑡
−

1

𝑘𝑐
) = 1 

 

or                                                                     𝜎𝑀
2 𝜅𝑘𝑡 + 𝑝(1 − 1 𝜅⁄ ) = 𝑘𝑡⁄                                                          

 
so when κ = 1, 𝜎𝑀

2 = 𝑘𝑡
2 as required from the tensile test.   

 

Drucker-Prandtl criterion:   

      The Drucker-Prager effective stress criterion [Drucker 1952] predicts the onset of yielding of soils.  When 

converted from soil mechanics notation to the current notation its form is 

 
𝜎𝑀(𝑘𝑐 + 𝑘𝑡) + 𝑝(𝑘𝑐 − 𝑘𝑡) − 2𝑘𝑐𝑘𝑡 = 0 

 
or                                                                   [𝜎𝑀(𝜅 + 1) + 𝑝(𝜅 − 1)] 2𝜅⁄  = 𝑘𝑡         
 
so when κ = 1, 2𝜎𝑀 = 2𝑘𝑡 as required from the tensile test.                                                 
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