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Finite Element Analysis Flow Chart 

Variational Calculus, Governing Partial Differential Equation, Virtual Work 
Essential BC  Essential, Non-essential Boundary Conditions Essential BC 
(Euler 1750)        (Bernoulli 1740) 

Methods of Weighted Residuals: 
  Least Squares Method (1900) 

       Galerkin Method (1930) 
   Method of Moments 

. . . 

Governing Integral Form (includes non-essential BC), Essential BC 

  𝑰 =  ∫𝒇(�⃗⃗� ) 𝒅𝛀 
 

𝛀

 + ∫𝒈(�⃗⃗� ) 𝒅𝚪
 

𝚪

 {
= 𝟎,
𝒐𝒓 

→ 𝒎𝒊𝒏𝒊𝒎𝒖𝒎
 

Assume spatial form in 𝛀, with unknown constants, that satisfy EBC. 
Substitute it and integrate that form to create a matrix system. 

Solve matrix system for unknown constants. 
 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Math methods - - - - - - - - - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - - - - - - - - - - - - -FEA methods (1960) - - - - - - - - - - - - - - - - - - - - -   

Mesh the domain, Ω, (and its boundary, Γ) with a non-overlapping union of elements: 

𝛀 = ⋃𝒆 𝛀
𝒆, 𝚪 =∪𝒃 𝚪𝒃,   𝛀𝒆 = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,       𝚪𝒃  ⊂  𝛀𝒆 

 

  𝑰 = ∑∫ 𝒇 𝒅𝛀 
 

𝛀𝒆

 

𝒆

+ ∑∫ 𝒈 𝒅𝚪 , 𝑝𝑙𝑢𝑠 EBC:  {
= 𝟎,
 𝒐𝒓

→ 𝒎𝒊𝒏𝒊𝒎𝒖𝒎

 

𝚪𝒃

 

𝒃

 

 

  𝑰 = ∑𝑰𝒆

 

𝒆

+ ∑𝑰𝒃  

 

𝒃

 

 
Each element has nodes.  A connection list of nodes on each element defines the mesh. 
The degrees of freedom (DOF) at each node define the system unknowns, 𝜹 (𝒏𝒅 × 𝟏) 

and the sub-set of element unknowns, 𝜹𝒆 (𝒏𝒊 × 𝟏), so 𝜹𝒆 ⊂𝒆 𝜹.   
The element sub-set of DOF is defined by its connection list: 

 
𝜹𝒆 = 𝜷𝒆 𝜹,   𝜷𝒆 ⟸ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 𝑓𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑒 

       (𝒏𝒊 × 𝟏) =  (𝒏𝒊 × 𝒏𝒅) (𝒏𝒅 × 𝟏) 

 
In an element, and on its boundary, the solution is interpolated* from the nodal DOF, 𝜹𝒆: 

𝒖(�⃗⃗� ) = 𝑯(�⃗⃗� ) 𝜹𝒆 = 𝒖(�⃗⃗� )𝑻 = 𝜹𝒆𝑻𝑯(�⃗⃗� )𝑻 

       (𝟏 × 𝟏) =  (𝟏 × 𝒏𝒊) (𝒏𝒊 × 𝟏) 

Unknown at 𝑥  = (interpolation functions at 𝑥 ) times (the element nodal DOF). 
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Finite Element Analysis Flow Chart, 2 

That interpolation in space also defines the gradient of the solution,  
in 𝑛𝑠 physical spatial dimensions, within that element domain, 𝛀𝒆: 

 
𝜕𝒖(�⃗⃗� )

𝜕�⃗⃗� 
= ∇⃗⃗  𝒖(�⃗⃗� ) =

𝜕𝑯(�⃗⃗� ) 𝜹𝒆

𝜕�⃗⃗� 
 ≡ 𝑩𝒆(�⃗⃗� ) 𝜹𝒆 = 𝜹𝒆𝑻𝑩𝒆(�⃗⃗� )𝑻 

          (𝒏𝒔 × 𝟏) =  (𝒏𝒔 × 𝒏𝒊) (𝒏𝒊 × 𝟏) 
 

Substitute the spatial solution and its gradient into the integral form. 
For PDE coefficients 𝑐1, 𝑐2, and 𝑐3, typically: 

𝑓 ⟶ 𝑓𝑒 = 𝜹𝒆𝑻𝑩𝒆(�⃗⃗� )𝑻 𝑐1𝑩
𝒆(�⃗⃗� ) 𝜹𝒆 + 𝜹𝒆𝑻𝑯(�⃗⃗� )𝑻𝑐2𝑯(�⃗⃗� ) 𝜹𝒆 + 𝜹𝒆𝑻𝑯(�⃗⃗� )𝑻𝑐3 

 
Often a boundary differential equation, with coefficients 𝑏1and 𝑏2, defines the 

non-essential boundary condition.  Typically, 𝑯𝒃(�⃗⃗� ) ⊂ 𝑯(�⃗⃗� ) 𝑎𝑛𝑑 𝜹𝒃 ⊂𝒃 𝜹: 
 

𝑔 ⟶ 𝑔𝑏 = 𝜹𝒃𝑻
𝑯𝒃(�⃗⃗� )𝑻 𝑏1𝑯

𝒃(�⃗⃗� ) 𝜹𝒃 + 𝜹𝒃𝑻
𝑯𝒃(�⃗⃗� )𝑻𝑏2 

 

The constants 𝜹𝒆 and 𝜹𝒃 move outside the integrals. Integrating these terms  
(usually numerically) converts the integral form to the matrix form: 

 
𝑺𝒆 = ∫ [𝑩𝒆(�⃗⃗� )𝑻 𝑐1𝑩

𝒆(�⃗⃗� ) + 𝑯(�⃗⃗� )𝑻𝑐2𝑯(�⃗⃗� ) ]
 

𝛀𝒆  𝒅𝛀,     𝑪𝒆 = ∫ { 𝑯(�⃗⃗� )𝑻𝑐3}  𝒅𝛀
 

𝛀𝒆  

 

 𝑺𝒆 = ∫ [𝑯𝒃(�⃗⃗� )𝑻 𝑏1𝑯
𝒃(�⃗⃗� ) ] 𝒅𝚪

 

𝚪𝒃 ,     𝑪𝒆 = ∫ { 𝑯𝒃(�⃗⃗� )𝑻𝑏2}
 

𝚪𝒃 𝒅𝚪 

 

𝐼𝑒(𝜹𝒆) = 𝜹𝒆𝑻𝑺𝒆 𝜹𝒆 + 𝜹𝒆𝑻𝑪𝒆,      𝐼𝑏(𝜹𝒃) = 𝜹𝒃𝑻
𝑺𝒃 𝜹𝒃 + 𝜹𝒃𝑻

𝑪𝒃 

 
Looping over all elements and scattering to the system degrees of freedom, 𝜹,  

gives the governing large system matrix form: 
 

Galerkin    𝐼(𝜹) =  ∑𝜹𝑻𝑺 𝜹 + ∑𝜹𝑻𝑪 = 𝟎 
 

Least Squares, Variational 𝐼(𝜹) =  
𝟏

𝟐
∑𝜹𝑻𝑺 𝜹 + ∑𝜹𝑻𝑪  → 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

 
Setting the Galerkin form to zero or rendering the Least Square form stationary 

gives the final matrix system (before essential BC): 
 

𝑺 𝜹 =  𝑪,  𝜹 ≠ 𝑺−𝟏 𝑪 
 

Here, all the terms in 𝑺 and 𝑪 are known from the element integrals. 
However, 𝑺 is usually singular and cannot be inverted until 

the essential boundary conditions are enforced (next). 
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Finite Element Analysis Flow Chart, 3 

If EBC are present the equations need to be re-arranged in partitioned form 

[
𝐒𝐮𝐮 𝐒𝐮𝐤

𝐒𝐤𝐮 𝐒𝐤𝐤
] {

𝜹𝐮

𝜹𝐤
} = {

𝐂𝐮

𝐂𝐤 + 𝐑𝐤
} 

where 𝜹𝐮 = unknown DOF, and 𝜹𝐤 = essential boundary values of the DOF. 

𝐑𝐤 = reactions associated with essential boundary conditions. 

 

The only unknowns in this matrix system are the vectors 𝜹𝐮 and 𝐑𝐤. 

The upper partition gives the unknown DOFs: 

𝑺𝒖𝒖𝜹𝒖 + 𝑺𝒖𝒌𝜹𝒌 = 𝑪𝒖,   𝜹𝒖 = 𝑺𝒖𝒖
−𝟏(𝑪𝒖 − 𝑺𝒖𝒌𝜹𝒌). 

The lower partition gives the reactions at essential boundary conditions: 

𝑹𝒌 = 𝑺𝒌𝒖𝜹𝒖 + 𝑺𝒌𝒌𝜹𝒌 − 𝑪𝒌 
 

Now that all DOF are known, the post-process phase starts. 
Loop over each element and gather its DOF, 𝜹𝒆 ⊂𝒆 𝜹 . 
Recover the solution gradient at points in the element: 

∇⃗⃗  𝒖(�⃗⃗� ) =
𝜕𝑯(�⃗⃗� ) 𝜹𝒆

𝜕�⃗⃗� 
 ≡ 𝑩𝒆(�⃗⃗� ) 𝜹𝒆 

 
Often, they are used to define other physical terms. 

Local ‘flux’ values are found using the PDE coefficients: 
 

𝜎(�⃗⃗� ) =  𝑐1𝑩
𝒆(�⃗⃗� ) 𝜹𝒆 

and are output for plotting at point 𝑥 . 
 

Occasionally, the solution integral is required: 
 

∫ 𝒖(�⃗⃗� ) 𝒅𝛀 =
 

𝛀
∑ ∫ 𝑯(�⃗⃗� ) 𝒅𝛀  𝜹𝒆 

𝛀𝒆
 
𝒆 . 

 
------- end ------ 

--- Notes --- 
* If curved elements are required, it is necessary to use  

non-dimensional coordinates, �⃗� , to interpolate the physical ones: 

𝒙(�⃗� ) = 𝑯(�⃗� ) 𝒙𝒆, 𝝏
𝝏𝒙⁄ = 𝝏

𝝏𝒓⁄ 𝝏𝒓
𝝏𝒙⁄  

 
If an error analysis and adaption is required, again loop over all elements, 

form a patch of elements, least square fit the discontinuous gradients 
to form a continuous gradient in the patch.  Integrate the square of the  

difference between continuous gradient and the element gradient. 
Process that for the error.  Compute new element sizes. 
Repeat the analysis until an acceptable error is obtained. 

 


