Numerical Integration

$$
\begin{aligned}
& \int_{\square} \boldsymbol{F}(r) d \boxtimes \approx \sum_{q=1}^{n_{q}} \boldsymbol{F}\left(r_{q}\right) w_{q} \\
& \int_{\Omega} \boldsymbol{F}(r) d \Omega=\int_{\square} \boldsymbol{F}(r)\left|\boldsymbol{J}^{\boldsymbol{e}}\right| d \boxtimes \approx \sum_{q=1}^{n_{q}} \boldsymbol{F}\left(r_{q}\right)\left|\boldsymbol{J}^{e}\left(r_{q}\right)\right| w_{q}
\end{aligned}
$$

Number of quadrature points for exact 1-D polynomial integration: Degree $\leq\left(2 n_{q}-1\right)$

Figure 3.1-1 Natural 1, 2, and 3 point quadrature points, ξ, on a line

Example 3.1-1 Given: Using numerical integration determine the physical length of the cubic line element in Ex. 2.2-1 with straight line coordinates of $\boldsymbol{x}^{\boldsymbol{e}^{T}}=\left[\begin{array}{llll}2 & 4 & 6 & 8\end{array}\right] \mathrm{cm}$. Solution: The length is

$$
L^{e}=\int_{x_{1}}^{x_{2}} d x=\int_{0}^{1} \frac{d x(r)}{d r} d r \equiv \int_{0}^{1}\left|J^{e}(r)\right| d r
$$

Recall that the interpolation function and its derivative are

$$
\begin{aligned}
\boldsymbol{H}(r)=\left[\left(2-11 r+18 r^{2}-9 r^{3}\right)\right. & \left(18 r-45 r^{2}+27 r^{3}\right) \\
& \left(-9 r+36 r^{2}-27 r^{3}\right) \\
\partial \boldsymbol{H}(r) / \partial r= & \left.\left(2 r-9 r^{2}+9 r^{3}\right)\right] / 2 \\
{\left[\left(-11+36 r-27 r^{2}\right)\right.} & \left(18-90 r+81 r^{2}\right) \ldots \\
\left(-9+72 r-81 r^{2}\right) & \left.\left(2-18 r+27 r^{2}\right)\right] / 2
\end{aligned}
$$

Since the coordinate is interpolated by the above cubic polynomial, $x(r)=\boldsymbol{H}(r) \boldsymbol{x}^{\boldsymbol{e}}$, the degree of the integrand is 3 and the number of Gauss points is only $n_{q}=2$ to get the exact answer. The numerical integration is

$$
L^{e}=\int_{0}^{1} \frac{d x(r)}{d r} d r=\sum_{q=1}^{n_{q}} \frac{d x\left(r_{q}\right)}{d r} w_{q}=\sum_{q=1}^{n_{q}} \frac{d \boldsymbol{H} \boldsymbol{x}^{\boldsymbol{e}}}{d r}\left(r_{q}\right) w_{q}=\left[\sum_{q=1}^{n_{q}} \frac{d \boldsymbol{H}}{d r}\left(r_{q}\right) w_{q}\right] \boldsymbol{x}^{\boldsymbol{e}}
$$

where the determinant of the Jacobian at each point in the summation is

$$
\left|J^{e}\left(r_{q}\right)\right|=\frac{d x\left(r_{q}\right)}{d r}=\frac{d \boldsymbol{H}}{d r}\left(r_{q}\right) \boldsymbol{x}^{e}
$$

Here, that product will be evaluated at each quadrature point. The two tabulated quadrature locations in unit coordinates are $r_{1}=0.21132$, and $r_{2}=0.78868$, and the two tabulated weights are the same $w_{1}=w_{2}=0.50000$. Set the sum total initially to zero, $L=0$, and begin the summation loop: set $q=1$, substituting $r=0.21132$ into the derivative the Jacobian is

$$
J\left(r_{1}\right)^{e}=\left[\begin{array}{llll}
-2.2990 & 1.2990 & 1.2990 & -0.2990
\end{array}\right]\left\{\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right\} c m=6.0000 \mathrm{~cm}
$$

Multiply by the tabulated weight and add to the sum:

$$
L^{e}=0+J\left(r_{1}\right)^{e} w_{1}=0+(6.0000 \mathrm{~cm}) 0.5000=3.0000 \mathrm{~cm} .
$$

At the second point the Jacobian is

$$
\boldsymbol{J}\left(r_{2}\right)^{e}=\left[\begin{array}{llll}
0.2990 & -1.2990 & -1.2990 & 2.2990
\end{array}\right]\left(\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right\} \mathrm{cm}=6.0000 \mathrm{~cm}
$$

Multiply this by the tabulated weight and add to the sum

$$
L^{e}=3.0000 \mathrm{~cm}+\boldsymbol{J}\left(r_{2}\right)^{e} w_{2}=3.0000+(6.0000 \mathrm{~cm}) 0.5000=6.0000 \mathrm{~cm}
$$

That yields the exact physical length of the cubic line element.
However, since the physical nodes are equally spaced on a straight line the physical location only depends on the first and last node. In other words, the geometry mapping degenerates to a linear interpolation $x(r)=(1-r) x_{1}+r x_{4}$. For a linear polynomial or a constant the exact integration requires only one quadrature point. For a one-point rule the tabulated data are $r_{1}=0.5000, w_{1}=1.0000$. Because the physical coordinates were equally spaced the element will have a constant Jacobian:

$$
J^{e}(r)=d \boldsymbol{H}(r) / d r \boldsymbol{x}^{e}=(-1) x_{1}+1 x_{4}=\left(x_{4}-x_{1}\right)=L .
$$

Continuing with the numerical evaluation of the length: $L^{e}=0+\left[\begin{array}{ll}-1 & 1\end{array}\right]\left\{\begin{array}{l}2 . \\ 8 .\end{array}\right\}=6 . \mathrm{cm}$.

Figure 3.2-1 Product of 1,2 and 3 quadrature point rules in a quadrilateral

Figure 3.2-4 Some symmetric quadrature locations for unit triangle

