Classic and Good Beam Elements

Rice University, MECH 417, J.E. Akin

The most common fourth-order ordinary differential equation (ODE) in engineering is the Euler thin beam equation. For such a beam with a line load of $w(x)$ per unit length the ODE is

$$
\frac{d^{2}}{d x^{2}}\left[E I(x) \frac{d^{2} v}{d x^{2}}\right]-w(x)=0
$$

where $I \equiv I_{z Z}=\int_{A} y^{2} d A$ is the area moment of inertia of the beam cross-section and y is the direction through the depth, t, of the beam. From the theory of even order ODEs it has been shown that there are two possible essential (Dirichlet) boundary conditions: specifying the transverse displacement, v , and/or specifying the slope of the beam, $\theta \equiv d v / d x$. Since both can be applied at any point it is necessary to have both quantities as the nodal degrees of freedom in a finite element mesh $\left(n_{g}=2\right)$. That means that beam elements must use Hermite interpolations instead of Lagrange interpolation. The associated Neumann (non-essential) boundary conditions allow the specification of the second and/or third derivatives of the deflection $\left(d^{2} v / d x^{2}\right.$ and/or $\left.d^{3} v / d x^{3}\right)$. In the mechanics of solids they are shown to be proportional to the bending moment and the transverse shear force, respectively, at a boundary point.

The most widely used beam element is a third degree polynomial line element with two nodes per element $\left(n_{n}=2\right)$ with the two generalized displacements per node being the transverse deflection $v(x)$ and the rotation (slope) $\theta(x)$ at each node. Combined, the number of independent degrees of freedom on an element is $n_{i}=$ $n_{n} * n_{g}=4$, which define the complete cubic polynomial (like $c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}$). Since the deflection and the slope (its first derivative) are continuous at the element interfaces this is known as a C^{1} continuous element (and it is C^{∞} inside the element). Which is sometimes called the L2C1 element.

Cubic beam, linear line load, point shear forces, point bending moments, and a linear temperature decrease from top to bottom through thickness t

If a classic single two-node cubic C^{1} beam element is in equilibrium then its matrix system (before Dirichlet BC) is

$$
\frac{E I^{e}}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{c}
V_{1} \\
M_{1} \\
V_{2} \\
M_{2}
\end{array}\right\}+\frac{L}{60}\left[\begin{array}{cc}
21 & 9 \\
3 L & 2 L \\
9 & 21 \\
-2 L & -3 L
\end{array}\right]\left\{f_{1}, \alpha_{2}\right\}+\frac{\alpha^{e} \Delta T^{e} E I^{e}}{t^{e}}\left\{\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right\}
$$

where L is the element length, E is the material elastic modulus, I is the cross-section moment of inertia (about an axis perpendicular to the displaced shape), v_{k} is the transverse (in plane) displacement at node k, θ_{k} is the small in plane slope at node k, V_{k} is the externally applied transverse shear force at node k (or the reaction force if v_{k} has a specified Dirichlet value), M_{k} is the externally applied moment (couple) at node k (or the reaction moment if slope θ_{k} has a specified Dirichlet value), f_{k} is the line load (force per unit length) value at node k
which is interpolated over the length of the element (using the linear L2 C^{0} interpolation used before for linear sources), α is the material's coefficient of thermal expansion (CTE), and ΔT is the change in temperature from the top of beam thickness, t , to the bottom of the thickness. Note that a temperature difference causes a thermal moment, but no thermal shear force. Of course, for multiple elements in a mesh these element matrices must be assembled (scattered) to form the larger system matrix equilibrium equations; which will also be singular until they are modified to enforce the boundary conditions.

To design a beam it is necessary to know the magnitude and location of its maximum (absolute) moment and its maximum (absolute) shear force. They are given by
$E I v^{\prime \prime}(x)=M(x)$ bending moment, and EI $v^{\prime \prime \prime}(x)=V(x)$ transverse shear force.
The third derivative of this cubic beam element is a constant $\left(6 c_{4}\right)$ along the length of the beam. It is rare for a beam problem to have only segments of constant shear force. Therefore, this beam element should not be used unless you have a zillion of them in the mesh. The American Institute of Steel Construction publishes solutions for thirty nine of the most common beam support and load cases (see the appendix). A mesh of cubic beam elements can only exactly solve less than half of those common cases, unless an infinite number of elements is used.

What is a reasonable alternative to this classical beam element? The answer is to form a 5 -th degree beam element by adding a third node at the center of the element that also uses the deflection and slope values $\left(n_{n}=3, n_{i}=n_{n} * n_{g}=6\right)$. That element can exactly solve all 39 example AISC cases with only one to four elements as shown in the table below. Note that he figure (below) for this element shows no point force or moment at the mid-length node because either one represents a discontinuity in the post-processing results.

Number of Elements Required to Exactly Solve the AISC Cases

Case	L3s	L2s	Case	L3s	L2s	Case	L3s	L2s
1	1	∞	14	2	2	27	2	∞
2	1	∞	15	1	∞	28	2	2
3	2	∞	16	2	2	29	2	∞
4	3	∞	17	2	2	30	3	3
5	2	∞	18	1	∞	31	3	3
6	3	∞	19	1	∞	32	1	∞
7	2	2	20	1	∞	33	2	2
8	2	2	21	2	2	34	3	∞
9	3	3	22	1	1	35	3	∞
10	3	3	23	1	1	36	3	∞
11	3	3	24	2	∞	37	4	∞
12	1	∞	25	2	∞	38	4	∞
13	2	2	26	2	∞	39	4	∞

Quintic beam with a quadratic line load

If a single three-node fifth degree C^{1} beam element is in equilibrium then its matrix system (before Dirichlet BC) is

$$
\begin{aligned}
& \frac{E I}{35 L^{3}}\left[\begin{array}{rrrrrr}
5,092 & 1,138 L & -3,584 & 1,920 L & -1,508 & 242 L \\
1,138 L & 332 L^{2} & -896 L & 320 L^{2} & -242 L & 38 L^{2} \\
-3,584 & -896 L & 7,168 & 0 & -3,584 & 896 L \\
1,920 L & 320 L^{2} & 0 & 1,280 L^{2} & -1,920 L & 320 L^{2} \\
-1,508 & -242 L & -3,584 & -1,920 L & 5,092 & -1,138 L \\
242 L & 38 L^{2} & 896 L & 320 L^{2} & -1,138 L & 332 L^{2}
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2} \\
v_{3} \\
\theta_{3}
\end{array}\right\}= \\
&=\left\{\begin{array}{l}
V_{1} \\
M_{1} \\
V_{2} \\
M_{2} \\
V_{3} \\
M_{3}
\end{array}\right\}+\frac{L}{420}\left[\begin{array}{rrr}
57 & 44 & -3 \\
3 L & 4 L & 0 \\
16 & 192 & 16 \\
-8 L & 0 & 8 L \\
-3 & 44 & 57 \\
0 & -4 L & -3 L
\end{array}\right]\left\{\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right\}+\frac{\alpha^{e} \Delta T^{e} E I^{e}}{t^{e}}\left\{\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
-1
\end{array}\right\}
\end{aligned}
$$

Keep in mind that the point shear force and the point moment (couple) both represent the Neumann boundary conditions which are weakly introduced through the integration by parts:

$$
\begin{gathered}
I_{N B C}=\left[v \frac{d}{d x}\left(E(x) I(x) \frac{d^{2} v}{d x^{2}}\right)\right]_{0}^{L}-\left[\frac{d v}{d x}\left(E(x) I(x) \frac{d^{2} v}{d x^{2}}\right)\right]_{0}^{L} \\
I_{N B C}=\left[v(L) \frac{d}{d x}\left(E(L) I(L) \frac{d^{2} v(L)}{d x^{2}}\right)+v(0) \frac{d}{d x}\left(-E(0) I(0) \frac{d^{2} v(0)}{d x^{2}}\right)\right] \\
+\left[\theta(L)\left(-E(L) I(L) \frac{d^{2} v(L)}{d x^{2}}\right)+\theta(0)\left(E(0) I(0) \frac{d^{2} v(0)}{d x^{2}}\right)\right] \\
I_{N B C}=[v(L) V(L)+v(0) V(0)]+\left[\theta(L) M(L)+\theta(0) M(0)=\left[v_{2} V_{2}+v_{1} V_{1}\right]+\left[\theta_{2} M_{2}+\theta_{1} M_{1}\right]\right] \\
I_{N B C}=-\left[\begin{array}{llll}
v_{1} & \theta_{1} & v_{2} & \theta_{2}
\end{array}\right]\left\{\begin{array}{l}
V_{1} \\
M_{1} \\
V_{2} \\
M_{2}
\end{array}\right\} \equiv-v^{\boldsymbol{e T}} \boldsymbol{F}_{N B C}, \quad \boldsymbol{F}_{N B C}=\left\{\begin{array}{l}
V_{1} \\
M_{1} \\
V_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{d}{d x}\left(E(0) I(0) \frac{d^{2} v(0)}{d x^{2}}\right) \\
E(0) I(0) \frac{d^{2} v(0)}{d x^{2}} \\
\frac{d}{d x}\left(E(L) I(L) \frac{d^{2} v(L)}{d x^{2}}\right) \\
-E(L) I(L) \frac{d^{2} v(L)}{d x^{2}}
\end{array}\right\}
\end{gathered}
$$

This form is useful for applications that are not structural, but are governed by the same ordinary differential equation (like creeping fluid flow). The Hermite polynomial interpolation functions for the cubic beam are

$$
v(x)=v_{1}\left(1-3 r^{2}+2 r^{3}\right)+\theta_{1}\left(r-2 r^{2}+r^{3}\right) L+v_{2}\left(3 r^{2}-2 r^{3}\right)+\theta_{2}\left(r^{3}-r^{2}\right) L
$$

and the quintic functions are

$$
\begin{aligned}
v(r) & =\left[v_{1}\left(1-23 r^{2}+66 r^{3}-68 r^{4}+24 r^{5}\right)+\theta_{1}\left(r-6 r^{2}+13 r^{3}-12 r^{4}+4 r^{5}\right) L\right. \\
& +v_{2}\left(16 r^{2}-32 r^{3}+16 r^{4}\right)+\theta_{2}\left(-8 r^{2}+32 r^{3}-40 r^{4}+16 r^{5}\right) L \\
& \left.+v_{3}\left(7 r^{2}-34 r^{3}+52 r^{4}-24 r^{5}\right)+\theta_{3}\left(-r^{2}+5 r^{3}-8 r^{4}+4 r^{5}\right) L\right]
\end{aligned}
$$

Both functions are given in the function Hermite_1D_C1_library.m, along with their first, second, and third derivatives with respect to x. They are located on the Rice Clear Linux system at /mech517/Akin_FEA_Lib.

BEAM DIAGRAMS AND FORMULAS

For various static loading conditions

14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER-
$R_{1}=V_{1} . \ldots=\frac{P^{2}}{2 l^{2}}(\mathrm{a}+2 l)$
$R_{2}=V_{2},=\frac{P a}{2 l^{3}}\left(3 l^{2}-a^{2}\right)$
${ }^{\boldsymbol{x}} \mathrm{y}=$

M_{1} (at point of load).

Page 7 of 12

BEAM DIAGRAMS AND FORMULAS For various static loading conditions

19. CANTILEVER BEAM-UNIFORMLY DISTRIBUTED LOAD Equivalent Tabular Load $=4 w t$
$\mathrm{R}=\mathrm{V}$. $=\mathrm{wl}$
v_{x}. $=w \mathrm{x}$
$M \max$. (at fixed end) $=\frac{w l^{2}}{2}$

$\frac{13 \hbar 2}{m}=$
$\frac{138}{1 m^{m}}=$

BEAM DIAGRAMS AND FORMULAS

BEAM DIAGRAMS AND FORMULAS
 For various static loading conditions

 For meaning of symbols, see page 2-118.

BEAM DIAGRAMS AND FORMULAS
For various static loading conditions

30. CONTINUOUS BEAM-TWO EQUAL SPANS—CONCENTRATED
LOAD AT CENTER OF ONE SPAN

American institute of Steel. Constriiction

Page $\mathbf{1 1}$ of $\mathbf{1 2}$

BEAM DIAGRaMS AND DEFLECTIONS

 For various static loading conditions
BEAM DIAGRAMS AND DEFLECTIONS
 For various static loading conditions

