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Equation 13.17 shows that our selections for generalized stress-strain measures will

correctly define the strain energy in the system. Next, we need to define the work done

by the applied loads, Pi, or couples, Ci. The work done by a transverse force is the

product of the force and the transverse displacement. Likewise, the work done by a

couple is the product of the couple and rotation (slope) at its point of application. These

contributions define a work term, W , giv en by

W =
L

∫ v(x) p(x) dx +
i
Σ v(xi ) Pi +

j
Σ v′(x j) C j .

The last two terms represent work done by concentrated point loads or couples. Thus, the

total potential energy, Π = U − W is

(13.18)Π = 1

2

L

∫ EI ( v′′(x) )2 dx −
L

∫ v(x) p(x) dx −
i
Σ vi Pi −

j
Σ v′j C j .

To determine the displacement field, v(x), that corresponds to the equilibrium state we

must minimize Π and satisfy the boundary conditions on v and v′ = θ .

13.10 Hermite element matrices

To introduce our finite elements we select a series of line segments to make up the

region L. There are numerous elements that could be selected. First we will select an

element with two nodes. Next, it is necessary to assume a displacement approximation so

we can evaluate the potential energy in Eq. 13.16. That equation contains second

derivatives and thus we need to assume a solution for v that will at least have both the

deflection, v, and the slope, v′, continuous between elements. The most common

assumption is to select the cubic Hermite polynomial presented in Fig. 3.6. The

unknowns at each of the two element nodes are v and v′ = θ . These quantities will be

called our generalized displacements or the generalized degrees of freedom. Thus, our

element interpolation functions are the Hermite form in Fig. 3.6:

v(x) = ⎡
⎣

H e
1(x) H e

2(x) H e
3(x) H e

4(x) ⎤
⎦

⎧
⎪
⎨
⎪
⎩

v1

v′1
v2

v′2

⎫
⎪
⎬
⎪
⎭

e

or v(x) = He(x) δδ
e, where δδ

e denotes the generalized displacements of the element. The

derivatives of the displacements are

(13.19)v′(x) = θ (x) = He′(x) δδ
e , v′′(x) = He′′(x) δδ

e .

Since v′′ and δδ
e have been selected as our generalized strains and generalized

displacements we will use the notation of Eq. 13.19 and write Eq. 13.17 as

ε
e = Be

δδ
e

where ε = v′′ in our present study. In the study of plates and shells additional curvature

terms would be present in ε . Employing our generalized notation the stiffness matrix and

distributed load vector can be written by inspection as
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Ke =
Le

∫ Be(x)T De(x) Be(x) dx , Fe
p =

Le

∫ He(x)T pe(x) dx .

Here we will again use unit coordinates on the element and set r = x / Le so that

d( ) / dx = d( ) / dr × 1 / Le. Thus,

Be = He′′ =
1

L2

d2H

dr2

so for the cubic Hermite in Fig. 3.6 this becomes (with L = Le)

Be =
1

L2
⎡
⎣

(12r − 6) L(6r − 4) (6 − 12r) L(6r − 2) ⎤
⎦

.

Recalling that

L

∫ rm dx =
L

(m + 1)

and assuming that Ee is a constant then the stiffness (with L = Le) is

(13.20)Ke =
EI

L3

⎡
⎢
⎢
⎢
⎣

12

6L

−12

6L

4L2

− 6L

2L2

12

−6L

sym.

4L2

⎤
⎥
⎥
⎥
⎦

.

If the lateral load, pe, is constant then

(13.21)Fe
p = pe

Le

∫ HeT

dx = pe Le

1

0

∫ HeT

(r) dr = pe Le

⎧
⎪
⎨
⎪
⎩

1 / 2

LeT

/12

1 / 2

−LeT

/12

⎫
⎪
⎬
⎪
⎭

.

Note that the distributed load puts half the resultant load at each end. It also causes equal

and opposite nodal couples at each of the two nodes.

When we wrote Eq. 13.18 we assumed that point loads would only be applied at the

node points. This may not always be true and we should consider such a load condition

as a special case of a distributed load. In that case the length of the distributed load

approaches zero and the magnitude of the force per unit length approaches infinity, but

the resultant load P is constant. That is, we define the load to be p(x) = P δ (x − x0)

where δ is the Dirac Delta distribution. Then the generalized load vector is

Fe
p =

Le

∫ HeT

(x)P δ (x − x0) dx

which is integrated by inspection by using the integral property of the Dirac Delta to yield

Fe
p = P He(r0) where r0 = x0 / L is the point of application of the load. To check this

concept, assume that the load is at Node 1. Then, r0 = 0 so that

FeT

p = P [ 1  0  0  0 ]

as expected. That is, all the force goes into Node 1 and no element nodal moments are

generated. Other common loading conditions can be treated in the same way and a

number have been tabulated by Akin [1] and others. As another example, if p(x) varies

linearly from pe
1 to pe

2 at the nodes of element e then
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p(x) = (1 − x / Le) pe
1 + x / Le pe

2 = [ (1 − r) r ]
⎧
⎨
⎩

p1

p2

⎫
⎬
⎭

e

and

(13.22)Fe
p =

Le

∫
⎧
⎪
⎨
⎪
⎩

1 − 3r2 + 2r3

Le(r − 2r2 + r3)

3r2 − 2r3

Le(r3 − r2)

⎫
⎪
⎬
⎪
⎭

p(x) dx =
Le

20

⎡
⎢
⎢
⎢
⎣

7

Le

3

−2Le/3

3

2Le/3

7

−Le

⎤
⎥
⎥
⎥
⎦

⎧
⎨
⎩

p1

p2

⎫
⎬
⎭

e

.

If the load is constant so that pe
1 = pe

2 = pe, then this reduces to Eq. 13.21, as expected.

Likewise, if pe
1 = 0 and pe

2 = p, this defines a triangular load and

(13.23)FeT

p =
PL

20
[ 3 2L/3 7 − L ] .

It is common to tabulate such results in terms of an applied unit resultant load. That

resultant is
Re =

Le

∫ pe(x) dx .

For common load variations, such as constant, linear, parabolic, and cubic forms where p

varies in proportion to rn, the resultant loads are Re = pL / (n + 1). The location, x, of

the resultant applied load is found from

x Re =
Le

∫ px dx

and the corresponding results are x = L(n + 1) / (n + 2). Thus, if we normalize Eq. 13.23

by dividing the resultant load, pL / 2, the result is

feT

p = [ 3/10 L/15 7/10 − L/10 ] .

We can also check the unit load results by applying statics to the data in that figure. To

check the load summary, we first take the sum of the moments about Node 1. This gives

+ 1 = 0 + (7/10)L + L/15 − L/10 = L(21 + 2 − 3) / 30 , OK .

Similarly, the sum of the moments about Node 2 is verified.

13.11 Cantilever with triangular load

To present an analytic example of this element consider a single element solution of

the cantilever beam shown in Fig. 13.24 to determine the deflection and slope at the free

end. Usually the deflected shape of a beam is defined by a fourth or fifth order

polynomial in x. Thus, our cubic element solution will usually give only an approximate

solution. For a single element the system equations are

EI

L3

⎡
⎢
⎢
⎢
⎢
⎣
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− − − −
−12
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6L
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⎤
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⎥
⎥
⎦

⎧
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⎪
⎨
⎪
⎪
⎩

v1

θ 1

− − −
v2

θ 2

⎫
⎪
⎪
⎬
⎪
⎪
⎭

=
WL

2

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3/10

L/15

− − − −
7/10

−L/10

⎫
⎪
⎪
⎬
⎪
⎪
⎭

+

⎧
⎪
⎨
⎪
⎩

0

0

F2

M2

⎫
⎪
⎬
⎪
⎭

.
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Figure 13.24 A single element approximate solution

The right side support requires that v2 = 0 = θ 2. The reduced equations become

EI

L3

⎡
⎢
⎣
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6L

6L

L2

⎤
⎥
⎦

⎧
⎨
⎩

v1
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⎫
⎬
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=
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⎨
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⎬
⎭

+
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⎨
⎩

0

0

⎫
⎬
⎭

so that

⎧
⎨
⎩

v1

θ 1

⎫
⎬
⎭

=
L3

12 EIL2

⎡
⎢
⎣
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⎤
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⎦
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⎨
⎩
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⎬
⎭
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2
=
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EI

⎧
⎨
⎩
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−1/24

⎫
⎬
⎭

.

The exact solution is 120 EI v = wL4 [ 4 − 5x / L + (x/L)5 ] so that the exact values of

the maximum deflection and slope are v = WL / (30 EI ) and θ = − WL3 / (24 EI ),

respectively. Thus, our single element solution gives the exact values of both v and θ at

the nodes, but is only approximate in the interior of the element. The last two equations

give the exact reactions.

In practical analysis one can often utilize a partial model to reduce the data

preparation and more importantly the analysis cost. One must be alert for planes where

the geometry, material property, supports and loads are symmetric mirror images. Often

the loading conditions occur in an anti-symmetric, or negative mirror image, fashion so

that one can still use a half portion model and simply recognize that the deflections and


