
CAD and Finite Element Analysis

• Most ME CAD applications require a
FEA in one or more areas:
– Stress Analysis
– Thermal Analysis
– Structural Dynamics
– Computational Fluid Dynamics (CFD)
– Electromagnetics Analysis
– ...



General Approach for FE, 1
• Select verification tools

– analytic, experimental, other fe method, etc.
• Select element type(s) and degree

– 3-D solid, axisymmetric solid, thick surface,
thin surface, thick curve, thin curve, etc.

• Understand primary variables (PV)
– Statics: displacements & (maybe) rotations
– Thermal: temperature
– CDF: velocity & pressure



General Approach for FE, 2

• Understand source (load) items
– Statics: point, line, surface, and volume forces
– Thermal: point, line, surface, and volume heat

generation
• Understand secondary variables (SV)

– Statics: strains, stresses, failure criterion, error
– Thermal: heat flux, error



General Approach for FE, 3

• Understand boundary conditions (BC)
– Essential BC (on PV)

• Statics: displacement and/or (maybe) rotation
• Thermal: temperature

– Natural BC (on SV)
• Statics: null surface traction vector
• Thermal: null normal heat flux

• One or the other at a boundary point.



General Approach for FE, 4

• Understand reactions at Essential BC
– Statics:

• Force at given displacement
• Moment at given rotation (if active)

– Thermal:
• Heat flux at given temperature



General Approach for FE, 5

• 1. Estimate the solution
• 2. Select an acceptable error (1 %)
• 3. Mesh the model
• 4. Solve the model (PV), post-process (SV)
• 5. Estimate the error

– A. Unacceptable error: Adapt mesh, go to 3
– B. Acceptable error: Validate the analysis



FE Mesh (FEM)

• Crude meshes that “look like” a part are
ok for mass properties but not for FEA.

• Local error is proportional to product of
the local mesh size (h) and the gradient
of the secondary variables.

• PV piecewise continuous polynomials of
degree p, and SV are discontinuous
polynomials of degree (p-1).



FEA Stress Models
• 3-D Solid, PV: 3 displacements (no rotations),

SV: 6 stresses
• 2-D Approximations

– Plane Stress (σσσσzz = 0) PV: 2 displacements,
SV: 3 stresses

– Plane Strain (εεεε zz = 0) PV: 2 displacements,
SV: 3 stresses (and σσσσzz )

– Axisymmetric (∂∂∂∂/∂θ∂θ∂θ∂θ = 0) PV: 2 displacements,
SV: 4 stresses



FEA Stress Models, 2

• 2-D Approximations
– Thick Shells, PV: 3 displacements (no

rotations), SV: 5 (or 6) stresses
– Thin Shells, PV: 3 displacements and 3

rotations, SV: 5 stresses (each at top, middle,
and bottom surfaces)

– Plate bending PV: normal displacement, in-
plane rotation vector, SV: 3 stresses (each at
top, middle, and bottom surfaces)



FEA Stress Models, 3

• 1-D Approximations
– Bars (Trusses), PV: 3 displacements (1 local

displacement), SV: 1 axial stress
– Torsion member, PV: 3 rotations (1 local

rotation), SV: 1 torsional stress
– Beams (Frames), PV: 3 displacements, 3

rotations, SV: local bending and shear stress
• Thick beam, thin beam, curved beam
• Pipe element, pipe elbow, pipe tee



FEA Accuracy

• PV are most accurate at the mesh nodes.
• SV are least accurate at the mesh nodes.

– (SV are most accurate at the Gauss points)
– SV can be post-processed for accurate nodal

values (and error estimates)



Local Error
• The error at a (non-singular) point is the

product of the element size, h, the
gradient of the secondary variables, and
a constant dependent on the domain
shape and boundary conditions.
– Large gradient points need small h
– Small gradient points can have large h

• Plan local mesh size with engineering
judgement.



Error Estimators

• Global and element error estimates are
often available from mathematical norms
of the secondary variables.  The energy
norm is the most common.

• It is proven to be asymptotically exact for
elliptical problems.

• Typically want less than 1 % error.



Error Estimates

• Quite good for elliptic problems (thermal,
elasticity, ideal flow), Navier-Stokes, etc.

• Can predict the new mesh size needed to
reach the required accuracy.

• Can predict needed polynomial degree.
• Require second post-processing pass for

localized (element level) smoothing.



Primary FEA Assumptions
• Model geometry
• Material Properties

– Failure Criterion, Factor of safety
• Mesh(s)

– Element type, size, degree
• Source (Load) Cases

– Combined cases, Factors of safety, Coord. Sys.
• Boundary conditions

– Coordinate system(s)



Primary FEA Matrix Costs
• Assume sparse banded linear algebra system

of E equations, with a half-bandwidth of B.
Full system if B = E.
– Storage required, S = B * E  (Mb)
– Solution Cost,  C αααα  B * E2      (time)
– Half symmetry: B ←←←← B/2, E ←←←← E/2, S ←←←← S/4,

C ←←←← C/8
– Quarter symmetry: B ←←←← B/4, E ←←←← E/4, S ←←←← S/16,

C ←←←← C/64
– Eighth symmetry, Cyclic symmetry, ...



Symmetry and Anti-symmetry

• Use symmetry states for the maximum
accuracy at the least cost in stress and
thermal problems.

• Cut the object with symmetry planes
(or surfaces) and apply new boundary
conditions (EBC or NBC) to account
for the removed material.



Symmetry (Anti-symmetry)

• Requires symmetry of the geometry and
material properties.

• Requires symmetry (anti-symmetry) of
the source terms.

• Requires symmetry (anti-symmetry) of
the essential boundary conditions.



Structural Model

• Symmetry
– Zero displacement normal to surface
– Zero rotation vector tangent to surface

• Anti-symmetry
–  Zero displacement vector tangent to surface
–  Zero rotation normal to surface



Thermal Model

• Symmetry
– Zero gradient normal to surface (insulated

surface, zero heat flux)
• Anti-symmetry

– Average temperature on surface known



Local Singularities

• All elliptical problems have local radial
gradient singularities near re-entrant
corners in the domain.

Re-entrant, C

Radius, r

u = r p f(θθθθ)

Strength, p = ππππ/C

∂∂∂∂u/∂∂∂∂r = r (p-1) f(θθθθ)

Corner: p = 2/3, weak

Crack:  p = 1/2, strong

∂∂∂∂u/∂∂∂∂r ⇒⇒⇒⇒ ∞∞∞∞  as  r ⇒⇒⇒⇒ 0



Stress Analysis Verification, 1

• Prepare initial estimates of deflections,
reactions and stresses.

• Eyeball check the deflected shape and
the principal stress vectors.



Stress Analysis Verification, 2

• The stresses often depend only on the
shape of the part and are independent
of the material properties.

• You must also verify the displacements
which almost always depend on the
material properties.



Stress Analysis Verification, 3

• The reaction resultant forces and/or
moments are equal and opposite to the
actual applied loading.

• For pressures or tractions remember to
compare their integral (resultant) to the
solution reactions.

• Reactions can be obtained at elements too.



Stress Analysis Verification, 4

• Compare displacements, reactions and
stresses to initial estimates. Investigate
any differences.

• Check maximum error estimates, if
available in the code.



Thermal Analysis Verification, 1
• Prepare initial estimates of the

temperatures, reaction flux, and heat
flux vectors.

• Eyeball check the temperature
contours and the heat flux vectors.

• Temperature contours should be
perpendicular to an insulated
boundary.



Thermal Analysis Verification, 2

• The temperatures often depend only on
the shape of the part.

• Verify the heat flux magnitudes which
almost always depend on the material
properties.



Thermal Analysis Verification, 3

• The reaction resultant nodal heat fluxes are
equal and opposite to the applied heat fluxes.

• For distributed heat fluxes remember to
compare their integral (resultant) to the
solution reactions.

• Reactions can be obtained at elements too.



Thermal Analysis Verification, 4

• Compare temperatures, reactions and
heat flux vectors to initial estimates.
Investigate any differences.

• Check maximum error estimates, if
available in the code.


