MECH 401 Mechanical Design Applications

Fundamentals Section - Master Notes

Spring 2004 Dr. M. O'Malley Rice University

Course Information

- Meeting time
 T-Th 8:00 9:15
 DH 1042
- Prerequisites MECH 311 or CIVI 300
- Texts
 - Mechanical Engineering Design
 by Shigley, Mischke, and Budynas
 .
- - Provide design skills to support MECH 407/408

 - Understand the application of engineering analysis to common machine elements
 - Enhance your ability to solve practical design problems using free body diagrams, Mohr's circle, beam analysis, etc.
- M. K. O'Mallev, PhD

 - MEB 216 Phone: 3545

 - omalleym@rice.edu
 Office hours:

 Monday 11:00 AM 12:00
 PM
 - Fundamentals
- D. M. McStravick, PhD, P.E.
- MEB 219 Phone: 2427
- dmcs@rice.edu
 Office hours:
 TBA
- Applications

Syllabus

- General policies
- (20%) Homework
 - Late homework is not accepted
 - Neatness counts!
- (10%) In-class mini-tests (6 total)
- (20%) Project

Overview and introduction of design of machine elements

- Two primary phases of design
- Inventive phase creative aspect
- Engineering phase understanding of physical reality aspect
- (1) makes a design unique or clever (MECH 407/408)
- (2) makes a design work
- This course will focus on 2nd aspect, making our designs work

"Understanding of physical reality"

- Theoretical results
- Empirical results
- Theory helps us understand physical phenomena so that we can address design at a fundamental level
- Theory often falls short, however, in describing complex phenomena, so we must use empirical results

Systems of Units

- Appendix lists units (English, SI), conversion factors, and abbreviations
- - A specified amount of a physical quantity by which through comparison another quantity of the same kind is measured
 - Examples?
 - Length, time, temperature
- 2 basic systems of units
 - U.S. customary foot-pound-second system (fps)
 - International System of Units (SI)

Primary dimensions

- Sufficient to conceive of and measure other dimensions
- Examples?

Secondary dimensions

- Measured in terms of primary dimensions
- Examples?

U.S. customary

- Foot-pound-second (fps)
- Inch-pound-second (ips)
- FPS:
 - □ Force pound-force
 - □ 1000 lbf = 1 kilopound = 1 kip
 - □ Derived unit of mass is lbf-s²/ft (slug)

SI (mLt)

- Mass, length, and time
- m kg
- L m
- t-s
- F is secondary (Newtons)
- 1 N ~ 1 apple
- F = ma
- 1 N = 1 kg·m/s²

Methodology

- Solving machine component problems
 - Step 1
 - Define/understand
 - Step 2
 - Define/synthesize the structure
 - ID interactions
 - Draw diagrams
 - Step 3
 - Analyze/solve using:Appropriate assumptions

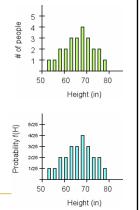
 - Physical laws Relationships
 - Step 4
 - Check is the answer reasonable?

Homework format

- Start each problem on a new page
- One side of sheet only
- Use straight-edge, work neatly
- Known:
 - Problem statement
 - Schematic
 - Given data
- Material properties Find:
- Concisely state what is to be determined
- Solution:
 - AssumptionsDesign decisions
 - Equations (make number substitutions last)
 - Comments (when appropriate)

Introduction to reliability engineering

- We cannot assume that all the quantities that we utilize in failure analysis are deterministic quantities
 - "We know their values absolutely!"
- In many cases, especially in manufacturing, this is NOT the case
 - A part dimension that is supposed to be 1" in diameter might vary between 0.95 and 1.05 inches due to variation in machining process (tool wear)
- Statistics and random variable methods enable designers to deal with variable quantities
 - Reliability Engineering

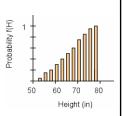

Definitions

- Random (stochastic) variable
 - A real-valued set of numbers that result from a random process or are descriptive of a random relationship
- For example, if I were to construct a list of everybody's height in this class...
 - Then height, H, would be considered a random

Sample #	H (height in inches)
1	
2	
3	
4	

Height example

- Let's say there are 25 people in this class.
- Construct a histogram to represent the data
- If we divide the (# of people) axis by the total number of people sampled, then we have
 - Probability density function (pdf)
 - PDF gives the probability that a random variable will have a
 - Same shape as the histogram


Height example

- If we integrate this "function", we get the cumulative distribution function
 - Gives the probability (likelihood) that a random variable will be less than or equal to a given value
 - For a random variable x,

$$\lim_{x\to\infty} F(x) = 1$$

For a discrete random variable,

$$F(x_i) = \sum_{i} f(x_j)$$

Characterizing random variables

- A random variable is not a scalar, but rather a vector
- In this deterministic case, we can say
- x = 63.5 inches
 This is a scalar, since it has only a single value
- In the stochastic case, we know that the variable x can take on many values x = 63.5, 68.7, 62.1, etc
- We define the discrete random variable \mathbf{x} to be a vector of the samples \mathbf{x}_1 , \mathbf{x}_2 ,
 - We refer to **x** as the variate

- Note, in this sense, a vector can be considered a collection of numbers, not a quantity with direction and magnitude it is helpful to have some scalar quantities that characterize the random variable
- - Direction and magnitude won't do the trick!

Scalar quantities to characterize x

Mean

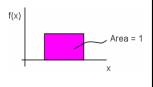
$$\hat{u} = \frac{x_1 + x_2 + \dots + x_n}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- A measure of the central value of a distribution
- Standard deviation

$$\hat{\sigma} = \left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2 \right]^{\frac{1}{2}}$$

- Note this is most useful as a comparative measure
- By itself, it's not particularly useful!

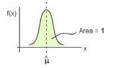
 Some people use 1/N instead of 1/(N-1), but 1/(N-1) typically gives better results for small N
- The notation for mean and standard deviation of a variate are as follows:

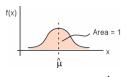

$$\mathbf{x} = (\hat{\mu}, \hat{\sigma})$$

Reliability Engineering, Cont.

- Terminology
 - Population
 - The total set of elements in which we are interested
 - Sample
 - A randomly selected subset of the total population on which measurements are taken
- Describing the shape of a distribution
 - Uniform
 - Normal We'll look at these
 - Log Normal
 - Weibull

Uniform distribution


- Simplest
- All elements have the same value
- Area equal to 1 implies that all samples in the given range of x have the same value of f(x), where f(x) describes the distribution


Normal distribution

Also called Gaussian distribution

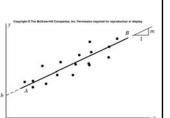
 $f(x) = \frac{1}{\hat{\sigma} \sqrt{2\pi}} e^{\left[-\frac{1}{2} \left(\frac{x-\hat{\mu}}{\hat{\sigma}}\right)^2\right]}$

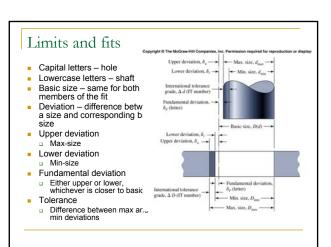
Small standard deviation $(\overset{\wedge}{\sigma})$

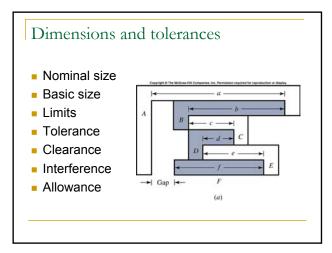
Large standard deviation $(\overset{\wedge}{\sigma})$

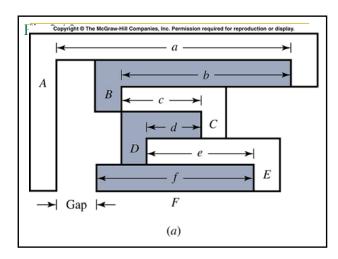
Notation

Normal distribution with mean and standard deviation:


 $\mathbf{x} = \mathbf{N}(\hat{\mu}, \hat{\sigma})$


- This IS a complete characterization
- CDF of Normal (Gaussian) Distribution cannot be found in closed form
- Generalized description of normal CDF:


Note: $F(x) = \int_{0}^{x} f(u)du$


Linear Regression

- Obtaining a best-fit to a set of data points
- Linear regression when best fit is a straight line
- Correlation coefficient tells you how good the fit is

Materials and Processes

- Must always make "things" out of materials
- Must be able to manufacture this "thing"
- Topics first introduced in Materials Science course (MSCI 301)
- How do we determine the properties of a material?
 - Tables
- How were these values determined?
 - Generally via destructive testing

Material properties

- Listed in tables
- Statistical variation
- Values listed are minimums
- Best data from testing of prototypes under intended loading conditions

Material parameters

- Parameters of interest in material selection for design?
 - □ Strength)

□ Stiffness > PRIMARY CONCERNS

- Weight
- Toughness
- Conductivity
- Thermal
- Corrosion resistance

Primary parameters of interest in material selection

- Strength
 - Amount of load (or weight, or force) a part can take before breaking or bending
- Amount of deflection or deformation for a given load
- Weight
- All of these depend on geometry
 - EXTENSIVE values
- We would like to derive results that are independent of size (geometry)
 - INTENSIVE values

Extensive vs. Intensive values

- Extensive
 - Weight (kg)
 - □ Strength (N)
 - □ Stiffness (N/m)

Intensive

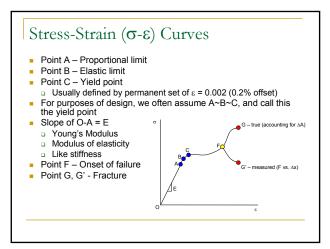
- □ Density (kg/m³)
- Yield strength or Ultimate Strength (N/m²)
- Modulus of Elasticity (N/m²)

How do we determine these values?

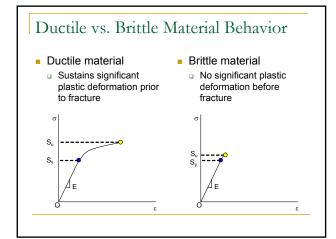
- Types of quasistatic material testing
 - Tension
 - Compression
 - Bending
 - Torsion

Tensile tests specimens

What is the difference between these specimens?


Mild ductile steel tensile test specimen

Brittle cast iron tensile test specimen


Tensile testing

- Best for general case
- Why?
 - Uniform loading and uniform cross-section generate uniform stress
 - Compression poses stability problems (buckling)
 - □ Torsion and bending impose non-uniform stress

Other test specimens – Ductile and Brittle Compression Bending Torsion

Important design considerations S_y = Yield strength It is the stress level... That will result in permanent set At which material undergoes marked decrease in stiffness At which Hooke's Law is no longer valid S_u = Ultimate strength Stress level that will result in fracture

Ductile vs. Brittle Material Behavior

- The only true means of determining if a material is ductile or brittle is by testing it (tensile test)
- Note: The same alloy can be either ductile or brittle, depending upon temperature and/or how it was formed
- Some general indications of brittle behavior
 - Glass, ceramic, and wood
 - Cast ferrous alloys
 - Materials in extreme cold temperatures
 - □ Also, if you can't find S_v in a handbook (only S_u given)

Fatigue testing – measuring endurance

- Most machines are loaded cyclically
 - Any piece of rotating machinery
- Strength decreases over time
 - "Fatigue strength" depends on number of cycles and the material

- How to test?
 - Use a rotating beam
 - More often vary axial loading over time

Common metals in machine design

- Magnesium
 - □ Specific stiffness ~ 25 MPa/(kg/m³)
 - □ Extremely light (~1/5 steel)
 - Extremely flammable
- Aluminum (very common)
 - □ Specific stiffness ~ 26
 - Stiffness-to-weight and strength-to-weight comparable to steel
 - □ 1/3 stiffness of steel
 - □ 1/3 density of steel

More metals...

- Gray cast iron
 - □ Specific stiffness ~ 15
 - Decent strength
 - Used where casting makes sense and weight doesn't matter
 - Gears, engine blocks, brake disks and drums
- Brass, bronze
 - Generally soft
 - Good for bearings (bronze)

More metals...

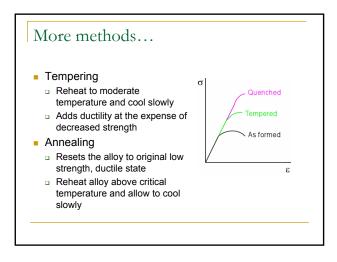
- Titanium
 - □ Specific stiffness ~ 26
 - Excellent strength-to-weight
 - Non-magnetic
 - Non-corrosive (implants)
 - Can be cast
 - Expensive
- Ductile cast iron
 - Stronger than gray cast iron
 - Heavy-duty gears, automobile door hinges

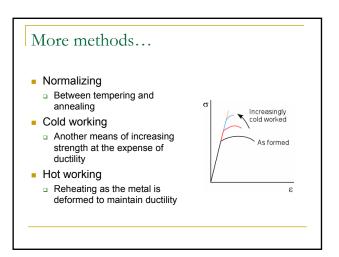
More metals...

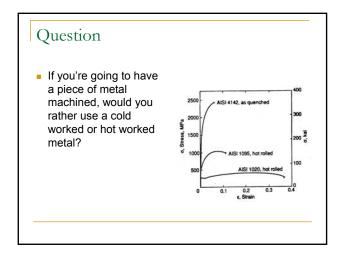
- Stainless steel
 - Non-magnetic
 - Much less corrosive than steel
 - Difficult to machine
- Steel
 - □ Specific stiffness ~ 27
 - Excellent fatigue properties
 - Good stiffness-to-weight
 - Better alloys have excellent strength-to-weight
 - Chromoly bicycle frames

Question...

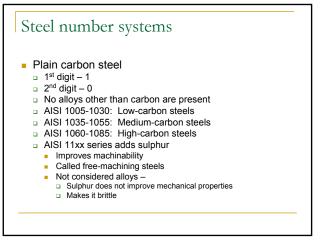
- Does all steel have the same strength?
- Does all steel have the same stiffness?
- Strength (S_v, S_u) depends on alloy and state
- Stiffness (E) depends only on metal type
 - i.e., E is a property of the metal and does not change with alloy or state


So what affects the strength of a metal?


- Two primary forms
 - Alloying
 - Crystal state
- Metal alloys
 - Adding certain elements in trace amounts to a metal can significantly change its strength
 - Since the alloying elements are present in trace amounts, they don't significantly alter modulus (stiffness) or density


Alloying

- Steel Primary alloying elements:
 - Manganese
 - Nickel
 - Chromium
 - Molybdenum
 - Vanadium
- The alloy is identified by AISI/SAE or ASTM numbering system
 - □ AISI American Iron and Steel Institute
 - $\hfill \square$ SAE Society of Automotive Engineering
 - ASTM American Society for Testing and Materials


Altering crystal state Crystal state of steel can be altered by heat treatment or cold working Quenching Heat to very high (~1400°F) temp and cool rather suddenly by immersion in water Creates crystal structure called martensite which is extremely strong but brittle

Used to define alloying elements and carbon content 1st two digits Indicate principal alloying elements Last 2 digits Indicate amount of carbon present In 100ths of a percent

Steel number systems

- Alloy steels
 - Have various elements added in small quantities
 - Improve material's
 - Strength Hardenability
 - Temperature resistance Corrosion resistance Other...

 - Nickel -
 - Improve strength without loss of ductility Enhances case hardenability
 - Molybdenum
 - In combination with nickel and/or chromium

 - Adds hardness Reduces brittleness
 - Increases toughness
 - Other alloys used to achieve specific properties

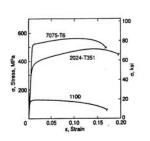
Steel numbering systems

- Tool steels
 - Medium- to high- carbon alloy steels
 - Especially formulated to give:
 - Very high hardness
 - Wear resistance
 - Sufficient toughness to resist shock loads experienced in machining
- Stainless steels
 - □ Alloy steels with at least 10% chromium
 - Improved corrosion resistance over plain or alloy

Steel numbering systems

- Martensitic stainless steels
 - □ 11.5 to 15% Cr and 0.15 to 1.2% C
 - Magnetic
 - Can be hardened by heat treatment
 - Cutlery
- Ferritic stainless steel
 - Over 16% Cr and low C content
 - Magnetic
 - Soft
 - Ductile
 - Not heat treatable
 - Cookware
- Both martensitic and ferritic called 400 series

Steel numbering systems

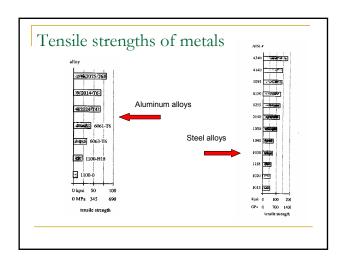

- Austenitic stainless steel
 - □ 17 to 25% Cr and 10 to 20% nickel
 - Better corrosion resistance (due to Ni)
 - Nonmagnetic
 - Excellent ductility and toughness
 - Cannot be hardened except by cold working
 - □ 300 series
- 300 series very weldable
- 400 series less so

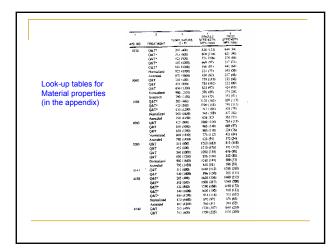
Aluminum alloys

- Principal alloying elements
 - Copper
 - Manganese
 - Silicon
 - Zinc
- Alloys are designated by the Aluminum Association numbering system

Aluminum alloys, cont.

Aluminum alloys are also heat-treatable, as designated by the -T classification in the AA numbering system




Aluminum alloys

- Wrought-aluminum alloys
 - Available in wide variety of stock shapes
 - I-beams, angles, channels, bars, etc
 - □ 1st digit indicates principal alloying element
 - Hardness indicated by a suffix containing a letter and up to 3 numbers
 - Most commonly available and used in machine design applications:
 - 2000 series
 - 6000 series

Aluminum alloys

- **2024**
 - Oldest alloy
 - Among the most machinable
 - One of the strongest Al alloys
 - High fatigue strength
 - Poor weldability and formability
- **6061**
 - Widely used in structural applications
 - Excellent weldabilty
 - Lower fatigue strength than 2024
 - Easily machined and popular for extrusion
- 7000 series
 - Aircraft aluminum
 - Strongest alloys

